Home
Class 12
MATHS
If log(2)(a+b)+log(2)(c+d) ge4, then the...

If `log_(2)(a+b)+log_(2)(c+d) ge4`, then the minimum value of a+b+c+d is

A

`2`

B

`4`

C

`6`

D

`8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_2(a+b) + \log_2(c+d) \geq 4 \) and find the minimum value of \( a+b+c+d \), we can follow these steps: ### Step 1: Combine the logarithms Using the property of logarithms that states \( \log_b(m) + \log_b(n) = \log_b(m \cdot n) \), we can rewrite the inequality: \[ \log_2((a+b)(c+d)) \geq 4 \] ### Step 2: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides with base 2: \[ (a+b)(c+d) \geq 2^4 \] This simplifies to: \[ (a+b)(c+d) \geq 16 \] ### Step 3: Apply the AM-GM inequality To find the minimum value of \( a+b+c+d \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. According to AM-GM, for any non-negative numbers \( x \) and \( y \): \[ \frac{x+y}{2} \geq \sqrt{xy} \] Let \( x = a+b \) and \( y = c+d \). Then we have: \[ \frac{(a+b) + (c+d)}{2} \geq \sqrt{(a+b)(c+d)} \] ### Step 4: Substitute the inequality From the previous step, we know that \( (a+b)(c+d) \geq 16 \). Therefore: \[ \sqrt{(a+b)(c+d)} \geq \sqrt{16} = 4 \] This gives us: \[ \frac{(a+b) + (c+d)}{2} \geq 4 \] ### Step 5: Solve for \( a+b+c+d \) Multiplying both sides by 2 yields: \[ (a+b) + (c+d) \geq 8 \] Thus, we find: \[ a+b+c+d \geq 8 \] ### Conclusion The minimum value of \( a+b+c+d \) is **8**. ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(2)(a+b)+log_(2)(c+d)>=4. Then find the minimum value of the expression a+b+c+d.

If log_(5)(x^(2)+x)-log_(5)(x+1)=2, then the value of x is a.5 b.10 c.25 d.32

If log_(2)x+log_(2)y>=6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

Let a,b" and "c are distinct positive numbers,none of them is equal to unity such that log _(b)a .log_(c)a+log_(a)b*log_(c)b+log_(a)c*log_(b)c-log_(b)a sqrt(a)*log_(sqrt(c))b^(1/3)*log_(a)c^(3)=0, then the value of abc is -

Let a=(log_(27)8)/(log_(3)2),b=((1)/(2^(log_(2)5)))((1)/(5^(log_(5)(01)))) and c=(log_(4)27)/(log_(4)3) then the value of (a+b+c), is and c=(log_(4)27)/(log_(4)3)

If log_(2)7= a and log_(3)2=b ," then the value of log_(14)84 is : (A) (1+3b+2ab)/(ab-b) (B) (1+2b+ab)/(b+ab) (C) (1+a+b)/(a+b) (D) (1+b+ab)/(a+ab)

If a=b^(2)=c^(3)=d^(4) then the value of log_(4)(abcd) is

If a=b^(2)=c^(3)=d^(4) then the value of log_(a)(abcd) is

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.