Home
Class 12
MATHS
x^(log(9)x)gt9 implies...

`x^(log_(9)x)gt9` implies

A

`xepsilon(0,oo)`

B

`xepsilon(0,(1)/(9))uu(9,oo)`

C

`xgt1`

D

`xlt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^{\log_{9} x} > 9 \), we can follow these steps: ### Step 1: Rewrite the inequality We start with the inequality: \[ x^{\log_{9} x} > 9 \] ### Step 2: Express 9 in terms of base 9 We know that \( 9 = 9^1 \). Thus, we can rewrite the inequality as: \[ x^{\log_{9} x} > 9^1 \] ### Step 3: Take logarithm base 9 on both sides Taking logarithm base 9 on both sides gives us: \[ \log_{9}(x^{\log_{9} x}) > \log_{9}(9) \] ### Step 4: Simplify using logarithmic properties Using the property of logarithms, \( \log_{a}(b^c) = c \cdot \log_{a}(b) \), we can simplify the left side: \[ \log_{9} x \cdot \log_{9} x > 1 \] This simplifies to: \[ (\log_{9} x)^2 > 1 \] ### Step 5: Solve the quadratic inequality Now, we can solve the inequality: \[ (\log_{9} x)^2 - 1 > 0 \] This can be factored as: \[ (\log_{9} x - 1)(\log_{9} x + 1) > 0 \] ### Step 6: Find the critical points The critical points are found by setting each factor to zero: 1. \( \log_{9} x - 1 = 0 \) implies \( \log_{9} x = 1 \) or \( x = 9 \) 2. \( \log_{9} x + 1 = 0 \) implies \( \log_{9} x = -1 \) or \( x = \frac{1}{9} \) ### Step 7: Test intervals We test the intervals determined by the critical points \( x = \frac{1}{9} \) and \( x = 9 \): - For \( x < \frac{1}{9} \): Choose \( x = \frac{1}{10} \) - \( \log_{9} \frac{1}{10} < -1 \) (negative) - For \( \frac{1}{9} < x < 9 \): Choose \( x = 1 \) - \( \log_{9} 1 = 0 \) (zero) - For \( x > 9 \): Choose \( x = 10 \) - \( \log_{9} 10 > 1 \) (positive) ### Step 8: Determine the solution set The inequality \( (\log_{9} x - 1)(\log_{9} x + 1) > 0 \) holds in the intervals: - \( x < \frac{1}{9} \) and \( x > 9 \) ### Conclusion Thus, the solution to the inequality \( x^{\log_{9} x} > 9 \) is: \[ x < \frac{1}{9} \quad \text{or} \quad x > 9 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

x^(log_(5)x)>5 implies x in

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

The equation x^(log_(3)x)=9 has

The solution set of the equation x^(log_(x)(1-x)^(2))=9 is

If x^(log_(3)x)=9, then x can be

The value of x, satisfying the inequality log_(0.3)(x^(2)+8)>log_(0.3)9x, lies in

The greatest value of the function log_(x) 1//9 - log_(3) x^(2) (x gt 1) is

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)