Home
Class 12
MATHS
The value of (1)/(log(2)n)+(1)/(log(3)n)...

The value of `(1)/(log_(2)n)+(1)/(log_(3)n)+....+(1)/(log_(43)n)` is …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \ldots + \frac{1}{\log_{43} n} \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_a b = \frac{1}{\log_b a} \] Using this property, we can rewrite each term in the sum: \[ \frac{1}{\log_k n} = \log_n k \] Thus, we can rewrite the entire expression as: \[ S = \log_n 2 + \log_n 3 + \ldots + \log_n 43 \] Now, we can use the property of logarithms that states: \[ \log_a b + \log_a c = \log_a (b \cdot c) \] Applying this property, we can combine all the logarithmic terms: \[ S = \log_n (2 \cdot 3 \cdot 4 \cdots 43) \] The product \( 2 \cdot 3 \cdot 4 \cdots 43 \) is the factorial of 43, denoted as \( 43! \). Therefore, we can express \( S \) as: \[ S = \log_n (43!) \] This is our final answer. Thus, the value of the expression \( \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \ldots + \frac{1}{\log_{43} n} \) is: \[ \log_n (43!) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

( The value of )/(log_(2)N)+(1)/(log_(4)N)+...+(1)/(log_(1988)N) is ;(N>0 and N!=0)( i) (1)/(log_(1998)((1)/(N)))( ii) log_(N)(1998!) (iii) log _(N)1998 (iv) none of these

In n = 10!, then what is the value of the following? (1)/(log_(2)n) +(1)/(log_(3)n) +(1)/(log_(4)n)+…..+ (1)/(log_(10)n)

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)