Home
Class 12
MATHS
The value of (log(a)x.log(b)x)/(log(a)x+...

The value of `(log_(a)x.log_(b)x)/(log_(a)x+log_(b)x)` is …...

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(\log_a x)(\log_b x)}{(\log_a x) + (\log_b x)}\), we can use the properties of logarithms. Let's break it down step by step. ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express \(\log_a x\) and \(\log_b x\) in terms of natural logarithms (or any common base): \[ \log_a x = \frac{\log x}{\log a}, \quad \log_b x = \frac{\log x}{\log b} \] ### Step 2: Substitute the values into the expression Substituting these values into the original expression gives: \[ \frac{\left(\frac{\log x}{\log a}\right)\left(\frac{\log x}{\log b}\right)}{\left(\frac{\log x}{\log a}\right) + \left(\frac{\log x}{\log b}\right)} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ \frac{(\log x)^2}{\log a \cdot \log b} \] ### Step 4: Simplify the denominator For the denominator, we find a common denominator: \[ \frac{\log x}{\log a} + \frac{\log x}{\log b} = \frac{\log x \cdot \log b + \log x \cdot \log a}{\log a \cdot \log b} = \frac{\log x (\log a + \log b)}{\log a \cdot \log b} \] ### Step 5: Substitute back into the expression Now substituting back, we have: \[ \frac{\frac{(\log x)^2}{\log a \cdot \log b}}{\frac{\log x (\log a + \log b)}{\log a \cdot \log b}} \] ### Step 6: Simplify the entire expression The \(\log a \cdot \log b\) cancels out from the numerator and denominator: \[ \frac{(\log x)^2}{\log x (\log a + \log b)} = \frac{\log x}{\log a + \log b} \] ### Final Result Thus, the value of the expression \(\frac{(\log_a x)(\log_b x)}{(\log_a x) + (\log_b x)}\) simplifies to: \[ \frac{\log x}{\log a + \log b} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

The value of (log_(a)(x))/(log_(ab)x)-log_(a)b

The value of a(log_(b)(log_(b)x))/(log_(b)a) is

The value of a^(("log"_(b)("log"_(b)x))/("log"_(b) a)) , is

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

What is the value of x if log_(3)x+log_(9)x+log_(27)x+log_(81)x=(25)/(4)?

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

The minimum value of log_(a)x+log_(x)a,0

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =