Home
Class 12
MATHS
The value of 2logx+2logx^(2)+2logx^(3)+....

The value of `2logx+2logx^(2)+2logx^(3)+....n` terms `(xgt0)` is …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(2 \log x + 2 \log x^2 + 2 \log x^3 + \ldots\) for \(n\) terms, where \(x > 0\). ### Step-by-Step Solution: 1. **Rewrite the Expression**: The given expression can be rewritten using the properties of logarithms: \[ 2 \log x + 2 \log x^2 + 2 \log x^3 + \ldots + 2 \log x^n \] This can be factored as: \[ 2 (\log x + \log x^2 + \log x^3 + \ldots + \log x^n) \] 2. **Apply Logarithm Properties**: Using the property of logarithms that states \(\log a^b = b \log a\), we can rewrite each term: \[ \log x^k = k \log x \] Thus, the expression becomes: \[ 2 (\log x + 2 \log x + 3 \log x + \ldots + n \log x) \] 3. **Factor Out \(\log x\)**: We can factor out \(\log x\) from the sum: \[ 2 \log x (1 + 2 + 3 + \ldots + n) \] 4. **Sum of the First \(n\) Natural Numbers**: The sum of the first \(n\) natural numbers is given by the formula: \[ S_n = \frac{n(n + 1)}{2} \] Therefore, we can substitute this into our expression: \[ 2 \log x \cdot \frac{n(n + 1)}{2} \] 5. **Simplify the Expression**: The \(2\) in the numerator and denominator cancels out: \[ n(n + 1) \log x \] ### Final Answer: Thus, the value of the expression \(2 \log x + 2 \log x^2 + 2 \log x^3 + \ldots\) for \(n\) terms is: \[ \boxed{n(n + 1) \log x} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

e^(x+2logx)

The value of int(logx)/(x+1)^(2)dx is

∫ x^2 logx dx

cos(2logx)

Solve log(x+1)=2logx

Evaluate int(logx)/((1+logx)^(2))dx .

intlogx(logx+2)dx=

int (2 log x)/(x[2(logx)^(2)-logx-3])dx

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is