Home
Class 12
MATHS
If (loga)/(y-z)=(logb)/(z-x)=(logc)/(x-y...

If `(loga)/(y-z)=(logb)/(z-x)=(logc)/(x-y)` and `a^(y^(2)+yz+z^(2))b^(z^(2)+zx+x^(2))c^(x^(2)+xy+y^(2))=` ….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equations provided: Given: \[ \frac{\log a}{y - z} = \frac{\log b}{z - x} = \frac{\log c}{x - y} = t \] From this, we can express \(\log a\), \(\log b\), and \(\log c\) in terms of \(t\): 1. \(\log a = t(y - z)\) 2. \(\log b = t(z - x)\) 3. \(\log c = t(x - y)\) Next, we need to evaluate the expression: \[ a^{y^2 + yz + z^2} b^{z^2 + zx + x^2} c^{x^2 + xy + y^2} \] Using the properties of logarithms, we can rewrite the expression: \[ \log\left(a^{y^2 + yz + z^2} b^{z^2 + zx + x^2} c^{x^2 + xy + y^2}\right) = (y^2 + yz + z^2) \log a + (z^2 + zx + x^2) \log b + (x^2 + xy + y^2) \log c \] Substituting the values of \(\log a\), \(\log b\), and \(\log c\): \[ = (y^2 + yz + z^2)(t(y - z)) + (z^2 + zx + x^2)(t(z - x)) + (x^2 + xy + y^2)(t(x - y)) \] Factoring out \(t\): \[ = t \left[(y^2 + yz + z^2)(y - z) + (z^2 + zx + x^2)(z - x) + (x^2 + xy + y^2)(x - y)\right] \] Now, we analyze the expression inside the brackets. Notice that it is a cyclic sum of the form: \[ S = (y^2 + yz + z^2)(y - z) + (z^2 + zx + x^2)(z - x) + (x^2 + xy + y^2)(x - y) \] This sum \(S\) can be shown to equal zero because it is a symmetric polynomial in \(x\), \(y\), and \(z\) that cancels out when summed cyclically. Thus, we have: \[ t \cdot S = 0 \implies \log\left(a^{y^2 + yz + z^2} b^{z^2 + zx + x^2} c^{x^2 + xy + y^2}\right) = 0 \] This implies: \[ a^{y^2 + yz + z^2} b^{z^2 + zx + x^2} c^{x^2 + xy + y^2} = 1 \] Finally, we conclude that: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

|(x^(2),y^(2)+z^(2),yz),(y^(2),z^(2)+x^(2),zx),(z^(2),x^(2)+y^(2),xy)| is divisible by

x+y-z=5 and x^(2)+y^(2)+z^(2)=29, find xy-yz-zx

If quad x+y+z=22 and xy+yz+zx=91xyz and (x(y^(2)+z^(2))+y(z^(2)+x^(2))+z(x^(2)+y^(2)))/(xyz)=bar(abc)a then find a+b+c+d

If a^(x)=b^(y)=c^(z) and abc=1, then find ((x^(2))/(x^(2)-zy)+(y^(2))/(y^(2)-zx)+(z^(2))/(z^(2)-xy))

If x+y+z=0, then x^(2)+xy+y^(2) equals y^(2)+yz+z^(2)(b)y^(2)-yz+z^(2)(c)z^(2)-zx+x^(2)(d)z^(2)+zx+x^(2)

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)