Home
Class 12
MATHS
If log(5)x+log(x)5=(5)/(2), then x= …......

If `log_(5)x+log_(x)5=(5)/(2)`, then x= …....

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{5} x + \log_{x} 5 = \frac{5}{2} \), we can follow these steps: ### Step 1: Use the Change of Base Formula We know that \( \log_{x} 5 = \frac{1}{\log_{5} x} \). Let's denote \( \log_{5} x = a \). Thus, we can rewrite the equation as: \[ a + \frac{1}{a} = \frac{5}{2} \] ### Step 2: Multiply through by \( a \) To eliminate the fraction, multiply both sides by \( a \): \[ a^2 + 1 = \frac{5}{2} a \] ### Step 3: Rearrange the Equation Rearranging gives us a standard quadratic equation: \[ 2a^2 - 5a + 2 = 0 \] ### Step 4: Factor the Quadratic Equation Now we will factor the quadratic equation: \[ 2a^2 - 4a - a + 2 = 0 \] Grouping the terms: \[ 2a(a - 2) - 1(a - 2) = 0 \] Factoring out \( (a - 2) \): \[ (a - 2)(2a - 1) = 0 \] ### Step 5: Solve for \( a \) Setting each factor to zero gives us: 1. \( a - 2 = 0 \) → \( a = 2 \) 2. \( 2a - 1 = 0 \) → \( a = \frac{1}{2} \) ### Step 6: Substitute Back to Find \( x \) Recall that \( a = \log_{5} x \). We can substitute back to find \( x \): 1. For \( a = 2 \): \[ \log_{5} x = 2 \implies x = 5^2 = 25 \] 2. For \( a = \frac{1}{2} \): \[ \log_{5} x = \frac{1}{2} \implies x = 5^{\frac{1}{2}} = \sqrt{5} \] ### Final Answer Thus, the values of \( x \) are: \[ x = 25 \quad \text{and} \quad x = \sqrt{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

log_(X)(X+2)+log_(X+2)X=(5)/(2)

y=log_(2)[log_(3)(log_(5)x)] ,then x=

If x, where 0,1,2 are respectively the values of x satisfying the equation ((log_(5)x))^(2)+(log_(5x)((5)/(x))), then

If log_(0,2)(x-1)>log_(0.04)(x+5) then

If log_(x)(4x^(log_(5)(x))+5)=2log_(5)x, then x equals to

If log_(5)(x^(2)+x)-log_(5)(x+1)=2, then the value of x is a.5 b.10 c.25 d.32

log(5+4x)=2log x