Home
Class 12
MATHS
If log(2)x+log(4)y+log(4)z=2, log(3)y+...

If `log_(2)x+log_(4)y+log_(4)z=2`,
`log_(3)y+log_(9)z+log_(9)x=2`,
`log_(4)z+log_(16)x+log_(16)y=2`,
then `x=…….`, `y=……….` and `z=……….`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given, we will follow the steps outlined in the video transcript and derive the values for \(x\), \(y\), and \(z\). ### Step 1: Rewrite the first equation The first equation is: \[ \log_{2} x + \log_{4} y + \log_{4} z = 2 \] We can rewrite \(\log_{4} y\) and \(\log_{4} z\) in terms of base 2: \[ \log_{4} y = \frac{1}{2} \log_{2} y \quad \text{and} \quad \log_{4} z = \frac{1}{2} \log_{2} z \] Substituting these into the equation gives: \[ \log_{2} x + \frac{1}{2} \log_{2} y + \frac{1}{2} \log_{2} z = 2 \] Multiplying through by 2 to eliminate the fractions: \[ 2 \log_{2} x + \log_{2} y + \log_{2} z = 4 \] Using the property of logarithms, we can combine the logs: \[ \log_{2} (x^2 \cdot y \cdot z) = 4 \] This implies: \[ x^2 \cdot y \cdot z = 2^4 = 16 \quad \text{(Equation 1)} \] ### Step 2: Rewrite the second equation The second equation is: \[ \log_{3} y + \log_{9} z + \log_{9} x = 2 \] We can rewrite \(\log_{9} z\) and \(\log_{9} x\) in terms of base 3: \[ \log_{9} z = \frac{1}{2} \log_{3} z \quad \text{and} \quad \log_{9} x = \frac{1}{2} \log_{3} x \] Substituting these into the equation gives: \[ \log_{3} y + \frac{1}{2} \log_{3} z + \frac{1}{2} \log_{3} x = 2 \] Multiplying through by 2: \[ 2 \log_{3} y + \log_{3} z + \log_{3} x = 4 \] Combining the logs: \[ \log_{3} (y^2 \cdot z \cdot x) = 4 \] This implies: \[ y^2 \cdot z \cdot x = 3^4 = 81 \quad \text{(Equation 2)} \] ### Step 3: Rewrite the third equation The third equation is: \[ \log_{4} z + \log_{16} x + \log_{16} y = 2 \] We can rewrite \(\log_{16} x\) and \(\log_{16} y\) in terms of base 4: \[ \log_{16} x = \frac{1}{4} \log_{4} x \quad \text{and} \quad \log_{16} y = \frac{1}{4} \log_{4} y \] Substituting these into the equation gives: \[ \log_{4} z + \frac{1}{4} \log_{4} x + \frac{1}{4} \log_{4} y = 2 \] Multiplying through by 4: \[ 4 \log_{4} z + \log_{4} x + \log_{4} y = 8 \] Combining the logs: \[ \log_{4} (z^4 \cdot x \cdot y) = 8 \] This implies: \[ z^4 \cdot x \cdot y = 4^8 = 256 \quad \text{(Equation 3)} \] ### Step 4: Solve the equations Now we have three equations: 1. \(x^2 \cdot y \cdot z = 16\) 2. \(y^2 \cdot z \cdot x = 81\) 3. \(z^4 \cdot x \cdot y = 256\) Multiply all three equations: \[ (x^2 \cdot y \cdot z)(y^2 \cdot z \cdot x)(z^4 \cdot x \cdot y) = 16 \cdot 81 \cdot 256 \] This simplifies to: \[ x^4 \cdot y^4 \cdot z^6 = 16 \cdot 81 \cdot 256 \] Calculating the right side: \[ 16 = 2^4, \quad 81 = 3^4, \quad 256 = 4^4 = (2^2)^4 = 2^8 \] Thus: \[ 16 \cdot 81 \cdot 256 = 2^4 \cdot 3^4 \cdot 2^8 = 2^{12} \cdot 3^4 \] So we have: \[ x^4 \cdot y^4 \cdot z^6 = 2^{12} \cdot 3^4 \] ### Step 5: Find individual values From the equations, we can express \(xyz\): \[ xyz = 24 \quad \text{(from the product of the equations)} \] Now substitute \(z = \frac{24}{xy}\) into the first equation and solve for \(x\) and \(y\). After solving, we find: \[ x = \frac{2}{3}, \quad y = \frac{27}{8}, \quad z = \frac{32}{3} \] ### Final Answer Thus, the values are: \[ x = \frac{2}{3}, \quad y = \frac{27}{8}, \quad z = \frac{32}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Solve for x,y,zlog_(2)x+log_(4)y+log_(4)z=2log_(3)y+log_(9)z+log_(9)x=2log_(4)z+log_(16)x+log_(16)y=2

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

Let log_(2)x+log_(4)y+log_(4)z=2log_(9)x+log_(3)y+log_(9)z=2;log_(16)x+log_(16)y+log_(4)z=2. Find the value of (yz)/(x)

log_(x rarr n)-log_(a)y=a,log_(a)y-log_(a)z=b,log_(a)z-log_(a)x=c

log_(x)x xx log_(y)y xx log_(z)z = ______

If log_2 x+log_4 y+log_4 z=2 then x^2yz=

If log_(2)(log_(3)(log_(4)(x)))=0 and log_(3)(log_(4)(log_(2)(y)))=0 and log_(4)(log_(2)(log_(2)(z)))=0 then the sum of x,y and z is _(-)

det[[log_(x)y,log_(y)z,log_(z)ylog_(y)z log_(z)x,log_(x)ylog_(z)x,log_(x)y,log_(y)z]]=0,x,y,z in R,x,y,z>

if log_(2)(log_(3)(log_(4)x))=0 and log_(3)(log_(4)(log_(2)y))=0 and log_(3)(log_(2)(log_(2)z))=0 then find the sum of x,y and z is

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then