Home
Class 12
MATHS
If (15+4sqrt(14))^(t)+(15-4sqrt(14))^(t)...

If `(15+4sqrt(14))^(t)+(15-4sqrt(14))^(t)=30` where `t=x^(2)-2|x|` , then the value of x= ….......

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (15 + 4\sqrt{14})^t + (15 - 4\sqrt{14})^t = 30 \) where \( t = x^2 - 2|x| \), we can follow these steps: ### Step 1: Define Variables Let: \[ a = 15 + 4\sqrt{14} \] \[ b = 15 - 4\sqrt{14} \] Thus, we can rewrite the equation as: \[ a^t + b^t = 30 \] ### Step 2: Analyze the Terms Notice that: \[ b = \frac{1}{a} \] because \( a \cdot b = (15 + 4\sqrt{14})(15 - 4\sqrt{14}) = 15^2 - (4\sqrt{14})^2 = 225 - 224 = 1 \). This means: \[ b^t = \left(\frac{1}{a}\right)^t = \frac{1}{a^t} \] ### Step 3: Substitute in the Equation Substituting \( b^t \) into the equation gives: \[ a^t + \frac{1}{a^t} = 30 \] ### Step 4: Let \( p = a^t \) Let \( p = a^t \). Then the equation becomes: \[ p + \frac{1}{p} = 30 \] ### Step 5: Multiply through by \( p \) Multiply both sides by \( p \): \[ p^2 + 1 = 30p \] Rearranging gives: \[ p^2 - 30p + 1 = 0 \] ### Step 6: Solve the Quadratic Equation Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -30, c = 1 \): \[ p = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ p = \frac{30 \pm \sqrt{900 - 4}}{2} \] \[ p = \frac{30 \pm \sqrt{896}}{2} \] \[ p = \frac{30 \pm 4\sqrt{14}}{2} \] \[ p = 15 \pm 2\sqrt{14} \] ### Step 7: Find Values of \( t \) We have two cases for \( p \): 1. \( a^t = 15 + 2\sqrt{14} \) 2. \( a^t = 15 - 2\sqrt{14} \) #### Case 1: \( a^t = 15 + 2\sqrt{14} \) Taking logarithm: \[ t \log(15 + 4\sqrt{14}) = \log(15 + 2\sqrt{14}) \] Thus: \[ t = \frac{\log(15 + 2\sqrt{14})}{\log(15 + 4\sqrt{14})} \] #### Case 2: \( a^t = 15 - 2\sqrt{14} \) Similarly: \[ t \log(15 + 4\sqrt{14}) = \log(15 - 2\sqrt{14}) \] Thus: \[ t = \frac{\log(15 - 2\sqrt{14})}{\log(15 + 4\sqrt{14})} \] ### Step 8: Relate \( t \) to \( x \) Now, we know \( t = x^2 - 2|x| \). We can set: 1. \( x^2 - 2|x| = 1 \) 2. \( x^2 - 2|x| = -1 \) ### Step 9: Solve for \( x \) 1. **For \( x^2 - 2|x| = 1 \)**: - If \( x \geq 0 \): \( x^2 - 2x - 1 = 0 \) → \( x = 1 \pm \sqrt{2} \) - If \( x < 0 \): \( x^2 + 2x - 1 = 0 \) → \( x = -1 \pm \sqrt{2} \) 2. **For \( x^2 - 2|x| = -1 \)**: - If \( x \geq 0 \): \( x^2 - 2x + 1 = 0 \) → \( x = 1 \) - If \( x < 0 \): \( x^2 + 2x + 1 = 0 \) → \( x = -1 \) ### Final Values of \( x \) Thus, the possible values of \( x \) are: \[ x = 1, -1, 1 + \sqrt{2}, 1 - \sqrt{2}, -1 + \sqrt{2}, -1 - \sqrt{2} \] ### Summary of Solutions The values of \( x \) are: \[ x = \pm 1, \pm (1 + \sqrt{2}), \pm (1 - \sqrt{2}) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

The no of real solutions of the equation (15+sqrt(14))^(t)+(15-sqrt(14))^(t)=30 are where t=x^(2)-2|x|

If sqrt(15-xsqrt(14))=sqrt(8)-sqrt(7) , then find the value of x .

If (2+sqrt(3))^(x)+(2-sqrt(3))^(x)=14 then x=

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, thenx =

(1)/(sqrt(15+4x-4x^(2)))

(7-4sqrt(3))^(^^)x+(7+4sqrt(3))^(^^)x=14backslash