Home
Class 12
MATHS
Express as an equivalent fraction with r...

Express as an equivalent fraction with rational denominator.
`(sqrt(10)+sqrt(5)-sqrt(3))/(sqrt((3))+sqrt((10))-sqrt((5)))`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \((\sqrt{10} + \sqrt{5} - \sqrt{3}) / (\sqrt{3} + \sqrt{10} - \sqrt{5})\) as an equivalent fraction with a rational denominator, we will follow these steps: ### Step 1: Identify the expression We start with the expression: \[ \frac{\sqrt{10} + \sqrt{5} - \sqrt{3}}{\sqrt{3} + \sqrt{10} - \sqrt{5}} \] ### Step 2: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of \((\sqrt{3} + \sqrt{10} - \sqrt{5})\) is \((\sqrt{3} + \sqrt{10} + \sqrt{5})\). So, we multiply: \[ \frac{(\sqrt{10} + \sqrt{5} - \sqrt{3})(\sqrt{3} + \sqrt{10} + \sqrt{5})}{(\sqrt{3} + \sqrt{10} - \sqrt{5})(\sqrt{3} + \sqrt{10} + \sqrt{5})} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (\sqrt{3} + \sqrt{10})^2 - (\sqrt{5})^2 = (3 + 10 + 2\sqrt{30}) - 5 = 8 + 2\sqrt{30} \] ### Step 4: Expand the numerator Now we expand the numerator: \[ (\sqrt{10} + \sqrt{5} - \sqrt{3})(\sqrt{3} + \sqrt{10} + \sqrt{5}) = \sqrt{10}\sqrt{3} + \sqrt{10}\sqrt{10} + \sqrt{10}\sqrt{5} + \sqrt{5}\sqrt{3} + \sqrt{5}\sqrt{10} + \sqrt{5}\sqrt{5} - \sqrt{3}\sqrt{3} - \sqrt{3}\sqrt{10} - \sqrt{3}\sqrt{5} \] This simplifies to: \[ \sqrt{30} + 10 + \sqrt{50} + \sqrt{15} + \sqrt{50} + 5 - 3 - \sqrt{30} - \sqrt{15} - \sqrt{15} \] Combining like terms gives: \[ 10 + 5 - 3 + 2\sqrt{50} + \sqrt{30} - 3\sqrt{15} \] This simplifies to: \[ 12 + 2\sqrt{50} - 3\sqrt{15} \] ### Step 5: Write the final expression Now we can write the final expression: \[ \frac{12 + 2\sqrt{50} - 3\sqrt{15}}{8 + 2\sqrt{30}} \] ### Step 6: Further simplify if possible We can factor out a 2 from the denominator: \[ = \frac{12 + 2\sqrt{50} - 3\sqrt{15}}{2(4 + \sqrt{30})} = \frac{6 + \sqrt{50} - \frac{3}{2}\sqrt{15}}{4 + \sqrt{30}} \] ### Final Answer: Thus, the equivalent fraction with a rational denominator is: \[ \frac{6 + \sqrt{50} - \frac{3}{2}\sqrt{15}}{4 + \sqrt{30}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Rationalise the denominator: (2)/(sqrt(5)+sqrt(3))

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (4)
  1. Express as an equivalent fraction with rational denominator. (8sqrt(...

    Text Solution

    |

  2. Express as an equivalent fraction with rational denominator. (11)/(2...

    Text Solution

    |

  3. Express as an equivalent fraction with rational denominator. (sqrt(1...

    Text Solution

    |

  4. Simplify ((sqrt3+sqrt5)(sqrt5+sqrt2))/(sqrt2+sqrt3+sqrt5)

    Text Solution

    |

  5. Express as an equivalent fraction with rational denominator. (1)/(2-...

    Text Solution

    |

  6. Express as an equivalent fraction with rational denominator. (1)/(sq...

    Text Solution

    |

  7. Express as an equivalent fraction with rational denominator. (15)/(s...

    Text Solution

    |

  8. Express as an equivalent fraction with rational denominator. (i) (3+...

    Text Solution

    |

  9. Express as an equivalent fraction with rational denominator. (sqrt(2...

    Text Solution

    |

  10. Express as an equivalent fraction with rational denominator. ([sqrt(...

    Text Solution

    |

  11. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  12. Prove the following identities. ((a+2)^(2)(a-3)+(a^(2)-4)sqrt(a^(2)-...

    Text Solution

    |

  13. Prove the following identities. (n^(3)-3n+(n^(2)-1)sqrt(n^(2)-4)-2)/...

    Text Solution

    |

  14. Express with rational denominator : (4)/(root3((9))-root3(3)+1)

    Text Solution

    |

  15. Express with rational denominator : (sqrt(8)+root3(4))/(sqrt((8))-ro...

    Text Solution

    |

  16. Find the square root of (A) 8+2sqrt(15), (B)49+20sqrt(6)

    Text Solution

    |

  17. Find the square root of (A) 6-sqrt(35) (B) 5sqrt(6)+12.

    Text Solution

    |

  18. Find the square root of sqrt(27)+sqrt(15).

    Text Solution

    |

  19. Find the square root of sqrt(18)-sqrt(16).

    Text Solution

    |

  20. Find the square root of sqrt(32)-sqrt(24).

    Text Solution

    |