Home
Class 12
MATHS
Express as an equivalent fraction with r...

Express as an equivalent fraction with rational denominator.
`(sqrt(2)(sqrt(3)+1)(2-sqrt(3)))/([sqrt((2))-1][3sqrt((3))-5][2+sqrt((2))])`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression as an equivalent fraction with a rational denominator, we will follow these steps: Given expression: \[ \frac{\sqrt{2}(\sqrt{3}+1)(2-\sqrt{3})}{(\sqrt{2}-1)(3\sqrt{3}-5)(2+\sqrt{2})} \] ### Step 1: Simplify the numerator First, we will simplify the numerator: \[ \sqrt{2}(\sqrt{3}+1)(2-\sqrt{3}) \] We can expand this expression step by step. 1. Expand \((\sqrt{3}+1)(2-\sqrt{3})\): \[ = \sqrt{3} \cdot 2 - \sqrt{3} \cdot \sqrt{3} + 1 \cdot 2 - 1 \cdot \sqrt{3} \] \[ = 2\sqrt{3} - 3 + 2 - \sqrt{3} \] \[ = (2\sqrt{3} - \sqrt{3}) + (2 - 3) = \sqrt{3} - 1 \] 2. Now multiply by \(\sqrt{2}\): \[ \sqrt{2}(\sqrt{3} - 1) = \sqrt{2}\sqrt{3} - \sqrt{2} = \sqrt{6} - \sqrt{2} \] So, the numerator simplifies to: \[ \sqrt{6} - \sqrt{2} \] ### Step 2: Simplify the denominator Now, let's simplify the denominator: \[ (\sqrt{2}-1)(3\sqrt{3}-5)(2+\sqrt{2}) \] 1. First, we will multiply \((\sqrt{2}-1)(2+\sqrt{2})\): \[ = \sqrt{2} \cdot 2 + \sqrt{2} \cdot \sqrt{2} - 1 \cdot 2 - 1 \cdot \sqrt{2} \] \[ = 2\sqrt{2} + 2 - 2 - \sqrt{2} = (2\sqrt{2} - \sqrt{2}) + (2 - 2) = \sqrt{2} \] 2. Now multiply by \((3\sqrt{3}-5)\): \[ = \sqrt{2}(3\sqrt{3}-5) = 3\sqrt{6} - 5\sqrt{2} \] So, the denominator simplifies to: \[ 3\sqrt{6} - 5\sqrt{2} \] ### Step 3: Form the new fraction Now we have: \[ \frac{\sqrt{6} - \sqrt{2}}{3\sqrt{6} - 5\sqrt{2}} \] ### Step 4: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ 3\sqrt{6} + 5\sqrt{2} \] The new fraction becomes: \[ \frac{(\sqrt{6} - \sqrt{2})(3\sqrt{6} + 5\sqrt{2})}{(3\sqrt{6} - 5\sqrt{2})(3\sqrt{6} + 5\sqrt{2})} \] ### Step 5: Calculate the denominator Using the difference of squares: \[ (3\sqrt{6})^2 - (5\sqrt{2})^2 = 54 - 50 = 4 \] ### Step 6: Calculate the numerator Now, we expand the numerator: \[ (\sqrt{6} - \sqrt{2})(3\sqrt{6} + 5\sqrt{2}) = \sqrt{6} \cdot 3\sqrt{6} + \sqrt{6} \cdot 5\sqrt{2} - \sqrt{2} \cdot 3\sqrt{6} - \sqrt{2} \cdot 5\sqrt{2} \] \[ = 18 + 5\sqrt{12} - 3\sqrt{12} - 10 = 8 + 2\sqrt{12} = 8 + 4\sqrt{3} \] ### Step 7: Final expression Putting it all together, we have: \[ \frac{8 + 4\sqrt{3}}{4} \] \[ = 2 + \sqrt{3} \] ### Final Answer Thus, the expression simplifies to: \[ 2 + \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Rationalise the denominator of (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) .

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (4)
  1. Express as an equivalent fraction with rational denominator. (15)/(s...

    Text Solution

    |

  2. Express as an equivalent fraction with rational denominator. (i) (3+...

    Text Solution

    |

  3. Express as an equivalent fraction with rational denominator. (sqrt(2...

    Text Solution

    |

  4. Express as an equivalent fraction with rational denominator. ([sqrt(...

    Text Solution

    |

  5. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  6. Prove the following identities. ((a+2)^(2)(a-3)+(a^(2)-4)sqrt(a^(2)-...

    Text Solution

    |

  7. Prove the following identities. (n^(3)-3n+(n^(2)-1)sqrt(n^(2)-4)-2)/...

    Text Solution

    |

  8. Express with rational denominator : (4)/(root3((9))-root3(3)+1)

    Text Solution

    |

  9. Express with rational denominator : (sqrt(8)+root3(4))/(sqrt((8))-ro...

    Text Solution

    |

  10. Find the square root of (A) 8+2sqrt(15), (B)49+20sqrt(6)

    Text Solution

    |

  11. Find the square root of (A) 6-sqrt(35) (B) 5sqrt(6)+12.

    Text Solution

    |

  12. Find the square root of sqrt(27)+sqrt(15).

    Text Solution

    |

  13. Find the square root of sqrt(18)-sqrt(16).

    Text Solution

    |

  14. Find the square root of sqrt(32)-sqrt(24).

    Text Solution

    |

  15. Find the square root of (i) (2+sqrt(3))/(2), (ii) 12-sqrt(68+48sqrt(...

    Text Solution

    |

  16. Find the square root of 2x-1+2sqrt(x^(2)-x-6).

    Text Solution

    |

  17. Find the square root of a+x+sqrt(2ax+x^(2)).

    Text Solution

    |

  18. Find the square root of (i) (3//2)(x-1)+sqrt(2x^(2)-7x-4) (ii) 1-x...

    Text Solution

    |

  19. Find the square root of 1+a^(2)+sqrt(1+a^(2)+a^(4))

    Text Solution

    |

  20. Find the square root of x+y+z+2sqrt(xz+yz).

    Text Solution

    |