Home
Class 12
MATHS
Find the square root of : 21+3sqrt(8)-6s...

Find the square root of : `21+3sqrt(8)-6sqrt(3)-6sqrt(7)-sqrt(24)-sqrt(56)+2sqrt(21)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the expression \( 21 + 3\sqrt{8} - 6\sqrt{3} - 6\sqrt{7} - \sqrt{24} - \sqrt{56} + 2\sqrt{21} \), we will simplify it step by step. ### Step 1: Simplify the square root terms First, we simplify the square root terms in the expression: 1. \( \sqrt{8} = 2\sqrt{2} \) 2. \( \sqrt{24} = 2\sqrt{6} \) 3. \( \sqrt{56} = 2\sqrt{14} \) Substituting these back into the expression gives us: \[ 21 + 3(2\sqrt{2}) - 6\sqrt{3} - 6\sqrt{7} - 2\sqrt{6} - 2\sqrt{14} + 2\sqrt{21} \] This simplifies to: \[ 21 + 6\sqrt{2} - 6\sqrt{3} - 6\sqrt{7} - 2\sqrt{6} - 2\sqrt{14} + 2\sqrt{21} \] ### Step 2: Combine like terms Now, we can combine the constant and square root terms: The constant term is \( 21 \). The square root terms are: \[ 6\sqrt{2} - 6\sqrt{3} - 6\sqrt{7} - 2\sqrt{6} - 2\sqrt{14} + 2\sqrt{21} \] ### Step 3: Group terms for easier handling We can group the square root terms: \[ = 6(\sqrt{2} - \sqrt{3} - \sqrt{7}) - 2(\sqrt{6} + \sqrt{14}) + 2\sqrt{21} \] ### Step 4: Rewrite the expression Now, let's rewrite the entire expression: \[ = 21 + 6(\sqrt{2} - \sqrt{3} - \sqrt{7}) - 2(\sqrt{6} + \sqrt{14}) + 2\sqrt{21} \] ### Step 5: Assume the form of the square root Assume that the square root of the entire expression can be written in the form: \[ \sqrt{(a + b + c)^2} \] Where \( a, b, c \) are terms we need to find. ### Step 6: Set up the equation We can set: \[ M = \sqrt{2} - \sqrt{3} - \sqrt{7} \] Then we can express the entire expression as: \[ (3 + M)^2 \] ### Step 7: Expand the square Expanding \( (3 + M)^2 \): \[ = 9 + 6M + M^2 \] ### Step 8: Substitute back for M Substituting back \( M = \sqrt{2} - \sqrt{3} - \sqrt{7} \): \[ = 9 + 6(\sqrt{2} - \sqrt{3} - \sqrt{7}) + (\sqrt{2} - \sqrt{3} - \sqrt{7})^2 \] ### Step 9: Final simplification The final expression simplifies to: \[ = 9 + 6(\sqrt{2} - \sqrt{3} - \sqrt{7}) + (2 - 3 - 7 + 2\sqrt{6} + 2\sqrt{14} + 2\sqrt{21}) \] ### Step 10: Calculate the square root Finally, we can conclude that the square root of the original expression is: \[ \sqrt{(3 + \sqrt{2} - \sqrt{3} - \sqrt{7})^2} = 3 + \sqrt{2} - \sqrt{3} - \sqrt{7} \] ### Final Answer: \[ \sqrt{21 + 3\sqrt{8} - 6\sqrt{3} - 6\sqrt{7} - \sqrt{24} - \sqrt{56} + 2\sqrt{21}} = 3 + \sqrt{2} - \sqrt{3} - \sqrt{7} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Find the square root of 10 + 2 sqrt21

Find the square root of 21 - 4sqrt5 + 8sqrt3 - 4 sqrt15

Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

find the square roots of following : (6sqrt(-2)-7)

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (4)
  1. If sqrt(3)=1.732, find the value of (sqrt(26-15sqrt((3))))/(5sqrt((2))...

    Text Solution

    |

  2. Find the square root of : 21-4sqrt(5)+8sqrt(3)-4sqrt(15).

    Text Solution

    |

  3. Find the square root of : 5-sqrt(10)-sqrt(15)+sqrt(6).

    Text Solution

    |

  4. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  5. Find the square root of : 21+3sqrt(8)-6sqrt(3)-6sqrt(7)-sqrt(24)-sqrt(...

    Text Solution

    |

  6. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  7. Prove that sqrt(10+sqrt((24))+sqrt((40))+sqrt((60)))=sqrt(2)+sqrt(3)+s...

    Text Solution

    |

  8. Without extracting the roots, determine which is greater sqrt(11)-sqrt...

    Text Solution

    |

  9. Prove that for x ge 1, the expression sqrt(x+2sqrt((x-1)))+sqrt(x-2sqr...

    Text Solution

    |

  10. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  11. Find the real cube root of 99-70sqrt(2).

    Text Solution

    |

  12. Find the real cube root of 9sqrt(3)+11sqrt(2).

    Text Solution

    |

  13. Find the real cube root of 38sqrt(14)-100sqrt(2).

    Text Solution

    |

  14. If sqrt(3)=1.732, find the value of (26+15sqrt(3))^(2//3)-(26+15sqrt(3...

    Text Solution

    |

  15. Prove (i) root3(20+14sqrt((2)))+root3(20-14sqrt((2)))=4 (ii) {6+sqrt...

    Text Solution

    |

  16. Let u(n)=(1)/(sqrt((5)))[((1+sqrt(5))/(2))^(n)-((1-sqrt(5))/(2))^(n)] ...

    Text Solution

    |

  17. If x=[-(q)/(2)+sqrt((q^(2))/(4)+(p^(3))/(27))]^(1//3)+[-(q)/(2)-sqrt((...

    Text Solution

    |

  18. Prove that root3(2) cannot be expressed in the form p+sqrt(q) where p ...

    Text Solution

    |

  19. Rationalize the denominator of (1)/(sqrt((a))+sqrt((b))+sqrt((c ))+sqr...

    Text Solution

    |

  20. If A/a = B/b = C/c= D/d then prove that sqrt(Aa)+sqrt(Bb)+sqrt(Cc)+sq...

    Text Solution

    |