Home
Class 12
MATHS
Prove that for x ge 1, the expression sq...

Prove that for `x ge 1`, the expression `sqrt(x+2sqrt((x-1)))+sqrt(x-2sqrt((x-1)))` is equal to 2 if ` x le 2`, and to `2sqrt(x-1)` if `x gt 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove the expression \[ \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \] is equal to \(2\) if \(x \leq 2\) and to \(2\sqrt{x - 1}\) if \(x > 2\) for \(x \geq 1\), we will analyze both cases separately. ### Step 1: Simplifying the Expression Start with the expression: \[ \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \] ### Step 2: Case 1 - When \(x \leq 2\) For \(x \leq 2\), we will simplify the terms inside the square roots. 1. **First Term:** \[ x + 2\sqrt{x - 1} = (\sqrt{x - 1} + 1)^2 \] This is because: \[ (\sqrt{x - 1} + 1)^2 = (\sqrt{x - 1})^2 + 2 \cdot \sqrt{x - 1} \cdot 1 + 1^2 = x - 1 + 2\sqrt{x - 1} + 1 = x + 2\sqrt{x - 1} \] 2. **Second Term:** \[ x - 2\sqrt{x - 1} = (\sqrt{x - 1} - 1)^2 \] This is because: \[ (\sqrt{x - 1} - 1)^2 = (\sqrt{x - 1})^2 - 2 \cdot \sqrt{x - 1} \cdot 1 + 1^2 = x - 1 - 2\sqrt{x - 1} + 1 = x - 2\sqrt{x - 1} \] 3. **Substituting Back:** Now substituting these back into the original expression: \[ \sqrt{(\sqrt{x - 1} + 1)^2} + \sqrt{(\sqrt{x - 1} - 1)^2} \] This simplifies to: \[ (\sqrt{x - 1} + 1) + (\sqrt{x - 1} - 1) = 2\sqrt{x - 1} \] 4. **Final Result for Case 1:** Since \(x \leq 2\) implies \(\sqrt{x - 1} \leq 1\), we can conclude: \[ \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = 2 \] ### Step 3: Case 2 - When \(x > 2\) Now consider the case when \(x > 2\). 1. **Using the same substitutions:** \[ \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = (\sqrt{x - 1} + 1) + (\sqrt{x - 1} - 1) \] 2. **Simplifying:** This gives: \[ (\sqrt{x - 1} + 1) + (\sqrt{x - 1} - 1) = 2\sqrt{x - 1} \] 3. **Final Result for Case 2:** Thus, for \(x > 2\): \[ \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = 2\sqrt{x - 1} \] ### Conclusion Combining both cases, we have shown that: - For \(x \leq 2\), the expression equals \(2\). - For \(x > 2\), the expression equals \(2\sqrt{x - 1}\). Thus, the proof is complete.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

int_(1)^(5)(sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)))dx =

int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is equal to

If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1) ?

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1)*x then

If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)) ?

If x>1 and (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=2 then x

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (4)
  1. If sqrt(3)=1.732, find the value of (sqrt(26-15sqrt((3))))/(5sqrt((2))...

    Text Solution

    |

  2. Find the square root of : 21-4sqrt(5)+8sqrt(3)-4sqrt(15).

    Text Solution

    |

  3. Find the square root of : 5-sqrt(10)-sqrt(15)+sqrt(6).

    Text Solution

    |

  4. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  5. Find the square root of : 21+3sqrt(8)-6sqrt(3)-6sqrt(7)-sqrt(24)-sqrt(...

    Text Solution

    |

  6. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  7. Prove that sqrt(10+sqrt((24))+sqrt((40))+sqrt((60)))=sqrt(2)+sqrt(3)+s...

    Text Solution

    |

  8. Without extracting the roots, determine which is greater sqrt(11)-sqrt...

    Text Solution

    |

  9. Prove that for x ge 1, the expression sqrt(x+2sqrt((x-1)))+sqrt(x-2sqr...

    Text Solution

    |

  10. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  11. Find the real cube root of 99-70sqrt(2).

    Text Solution

    |

  12. Find the real cube root of 9sqrt(3)+11sqrt(2).

    Text Solution

    |

  13. Find the real cube root of 38sqrt(14)-100sqrt(2).

    Text Solution

    |

  14. If sqrt(3)=1.732, find the value of (26+15sqrt(3))^(2//3)-(26+15sqrt(3...

    Text Solution

    |

  15. Prove (i) root3(20+14sqrt((2)))+root3(20-14sqrt((2)))=4 (ii) {6+sqrt...

    Text Solution

    |

  16. Let u(n)=(1)/(sqrt((5)))[((1+sqrt(5))/(2))^(n)-((1-sqrt(5))/(2))^(n)] ...

    Text Solution

    |

  17. If x=[-(q)/(2)+sqrt((q^(2))/(4)+(p^(3))/(27))]^(1//3)+[-(q)/(2)-sqrt((...

    Text Solution

    |

  18. Prove that root3(2) cannot be expressed in the form p+sqrt(q) where p ...

    Text Solution

    |

  19. Rationalize the denominator of (1)/(sqrt((a))+sqrt((b))+sqrt((c ))+sqr...

    Text Solution

    |

  20. If A/a = B/b = C/c= D/d then prove that sqrt(Aa)+sqrt(Bb)+sqrt(Cc)+sq...

    Text Solution

    |