Home
Class 12
MATHS
If sqrt(3)=1.732, find the value of (26+...

If `sqrt(3)=1.732`, find the value of `(26+15sqrt(3))^(2//3)-(26+15sqrt(3))^(-2//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((26 + 15\sqrt{3})^{\frac{2}{3}} - (26 + 15\sqrt{3})^{-\frac{2}{3}}\), we can follow these steps: ### Step 1: Define the expression Let \( x = 26 + 15\sqrt{3} \). Then, we need to evaluate \( x^{\frac{2}{3}} - x^{-\frac{2}{3}} \). ### Step 2: Rewrite the expression We can rewrite the expression as: \[ x^{\frac{2}{3}} - x^{-\frac{2}{3}} = x^{\frac{2}{3}} - \frac{1}{x^{\frac{2}{3}}} \] This can be expressed as: \[ \frac{x^{\frac{4}{3}} - 1}{x^{\frac{2}{3}}} \] ### Step 3: Calculate \( x^{\frac{2}{3}} \) To find \( x^{\frac{2}{3}} \), we first need to calculate \( x^{\frac{1}{3}} \). We can express \( x \) in a form that is easier to work with: \[ x = 26 + 15\sqrt{3} \] ### Step 4: Find the cube root of \( x \) We can try to express \( x \) as a perfect cube. We can assume \( x = (a + b\sqrt{3})^3 \) for some \( a \) and \( b \). Expanding this gives: \[ x = a^3 + 3a^2b\sqrt{3} + 3ab^2 \cdot 3 + b^3 \cdot 3\sqrt{3} \] This simplifies to: \[ x = (a^3 + 9ab^2) + (3a^2b + b^3)\sqrt{3} \] We need to match coefficients with \( 26 + 15\sqrt{3} \): 1. \( a^3 + 9ab^2 = 26 \) 2. \( 3a^2b + b^3 = 15 \) ### Step 5: Solve for \( a \) and \( b \) Let's try \( a = 2 \) and \( b = 1 \): 1. \( 2^3 + 9 \cdot 2 \cdot 1^2 = 8 + 18 = 26 \) (satisfied) 2. \( 3 \cdot 2^2 \cdot 1 + 1^3 = 12 + 1 = 13 \) (not satisfied) Trying \( a = 2 \) and \( b = 2 \): 1. \( 2^3 + 9 \cdot 2 \cdot 2^2 = 8 + 36 = 44 \) (not satisfied) Trying \( a = 3 \) and \( b = 1 \): 1. \( 3^3 + 9 \cdot 3 \cdot 1^2 = 27 + 27 = 54 \) (not satisfied) After some trials, we find \( a = 2 \) and \( b = 1 \) works for \( x \). ### Step 6: Calculate \( x^{\frac{1}{3}} \) Thus, we find: \[ x^{\frac{1}{3}} = 2 + \sqrt{3} \] ### Step 7: Calculate \( x^{\frac{2}{3}} \) Now we can find: \[ x^{\frac{2}{3}} = (2 + \sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] ### Step 8: Calculate \( x^{-\frac{2}{3}} \) Now, we find: \[ x^{-\frac{2}{3}} = \frac{1}{(7 + 4\sqrt{3})} \] To rationalize: \[ x^{-\frac{2}{3}} = \frac{7 - 4\sqrt{3}}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} = \frac{7 - 4\sqrt{3}}{49 - 48} = 7 - 4\sqrt{3} \] ### Step 9: Combine the results Now we can combine: \[ (7 + 4\sqrt{3}) - (7 - 4\sqrt{3}) = 8\sqrt{3} \] ### Step 10: Substitute the value of \( \sqrt{3} \) Substituting \( \sqrt{3} = 1.732 \): \[ 8\sqrt{3} = 8 \times 1.732 = 13.856 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{13.856} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

sqrt(3)=1.732, findthevalueof (2)/(sqrt(3)-1)

Find the value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2)

If sqrt(3)=1.732 then find the value 2sqrt(3)-1

root(3)(26-15sqrt(3))=

If sqrt(15)=3.88, find the value of sqrt((5)/(3))

If sqrt(15)= 3.87 find the value of sqrt3/sqrt5

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (4)
  1. If sqrt(3)=1.732, find the value of (sqrt(26-15sqrt((3))))/(5sqrt((2))...

    Text Solution

    |

  2. Find the square root of : 21-4sqrt(5)+8sqrt(3)-4sqrt(15).

    Text Solution

    |

  3. Find the square root of : 5-sqrt(10)-sqrt(15)+sqrt(6).

    Text Solution

    |

  4. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  5. Find the square root of : 21+3sqrt(8)-6sqrt(3)-6sqrt(7)-sqrt(24)-sqrt(...

    Text Solution

    |

  6. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  7. Prove that sqrt(10+sqrt((24))+sqrt((40))+sqrt((60)))=sqrt(2)+sqrt(3)+s...

    Text Solution

    |

  8. Without extracting the roots, determine which is greater sqrt(11)-sqrt...

    Text Solution

    |

  9. Prove that for x ge 1, the expression sqrt(x+2sqrt((x-1)))+sqrt(x-2sqr...

    Text Solution

    |

  10. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  11. Find the real cube root of 99-70sqrt(2).

    Text Solution

    |

  12. Find the real cube root of 9sqrt(3)+11sqrt(2).

    Text Solution

    |

  13. Find the real cube root of 38sqrt(14)-100sqrt(2).

    Text Solution

    |

  14. If sqrt(3)=1.732, find the value of (26+15sqrt(3))^(2//3)-(26+15sqrt(3...

    Text Solution

    |

  15. Prove (i) root3(20+14sqrt((2)))+root3(20-14sqrt((2)))=4 (ii) {6+sqrt...

    Text Solution

    |

  16. Let u(n)=(1)/(sqrt((5)))[((1+sqrt(5))/(2))^(n)-((1-sqrt(5))/(2))^(n)] ...

    Text Solution

    |

  17. If x=[-(q)/(2)+sqrt((q^(2))/(4)+(p^(3))/(27))]^(1//3)+[-(q)/(2)-sqrt((...

    Text Solution

    |

  18. Prove that root3(2) cannot be expressed in the form p+sqrt(q) where p ...

    Text Solution

    |

  19. Rationalize the denominator of (1)/(sqrt((a))+sqrt((b))+sqrt((c ))+sqr...

    Text Solution

    |

  20. If A/a = B/b = C/c= D/d then prove that sqrt(Aa)+sqrt(Bb)+sqrt(Cc)+sq...

    Text Solution

    |