Home
Class 12
MATHS
Rationalize the denominator of (1)/(sqrt...

Rationalize the denominator of `(1)/(sqrt((a))+sqrt((b))+sqrt((c ))+sqrt((d))+sqrt((b'))+sqrt((c ')))` if `(a)/(d)=(b)/(b')=(c )/(c')`.

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator of the expression \[ \frac{1}{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d} + \sqrt{b'} + \sqrt{c'}} \] given the condition \[ \frac{a}{d} = \frac{b}{b'} = \frac{c}{c'} \] let's denote the common ratio as \( k \). Thus, we can express \( a, b, c, d, b', c' \) in terms of \( k \): 1. \( a = kd \) 2. \( b = kb' \) 3. \( c = kc' \) Now, substituting these values into the denominator: \[ \sqrt{a} = \sqrt{kd}, \quad \sqrt{b} = \sqrt{kb'}, \quad \sqrt{c} = \sqrt{kc'}, \quad \sqrt{d} = \sqrt{d}, \quad \sqrt{b'} = \sqrt{b'}, \quad \sqrt{c'} = \sqrt{c'} \] The denominator becomes: \[ \sqrt{kd} + \sqrt{kb'} + \sqrt{kc'} + \sqrt{d} + \sqrt{b'} + \sqrt{c'} \] Now, we can factor out \(\sqrt{d}\) from the terms involving \(k\): \[ = \sqrt{d}(\sqrt{k} + \sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} + 1 + \sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}}) \] This simplifies to: \[ = \sqrt{d}(\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} + 1) \] Now, we can rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator. The conjugate is: \[ \sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} - 1 \] Thus, we multiply: \[ \frac{1}{\sqrt{d}(\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} + 1)} \cdot \frac{\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} - 1}{\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} - 1} \] This gives us: \[ \frac{\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} - 1}{\sqrt{d}((\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}})^2 - 1^2)} \] Now, we need to simplify the denominator: \[ (\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}})^2 - 1 \] This results in: \[ k + 4\frac{b'}{d} + 2\sqrt{k \cdot 4\frac{b'}{d}} + \frac{c'}{d} - 1 \] Finally, we can write the rationalized expression as: \[ \frac{\sqrt{k} + 2\sqrt{\frac{b'}{d}} + \sqrt{\frac{c'}{d}} - 1}{\sqrt{d}(k + 4\frac{b'}{d} + 2\sqrt{k \cdot 4\frac{b'}{d}} + \frac{c'}{d} - 1)} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (3) (Multiple choice questions)|15 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

rationalize the denominators (a) (1)/(sqrt(2sqrt(7)+sqrt(5))) (b) (2sqrt(5))/(sqrt(3)+sqrt(5))

(a+c sqrt(b))(2+y sqrt(b))

(sqrt(24)+sqrt(216))/(sqrt(96))=?2sqrt(6)(b)2(c)6sqrt(2)(d)

The rationalisation factor of sqrt(3) is -sqrt(3) (b) (1)/(sqrt(3))(c)2sqrt(3)(d)-2sqrt(3)

The rationalisation factor of 2+sqrt(3) is 2-sqrt(3) (b) sqrt(2)+3(c)sqrt(2)-3(d)sqrt(3)-2

In /_\ABC ,the minimum value of Sigma((sqrt(a))/(sqrt(b)+sqrt(c)-sqrt(a))) is

If sqrt(a)=sqrt(b)+sqrt(c) and sqrt(a),sqrt(b)) and sqrt(c) are there surds,then

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (4)
  1. If sqrt(3)=1.732, find the value of (sqrt(26-15sqrt((3))))/(5sqrt((2))...

    Text Solution

    |

  2. Find the square root of : 21-4sqrt(5)+8sqrt(3)-4sqrt(15).

    Text Solution

    |

  3. Find the square root of : 5-sqrt(10)-sqrt(15)+sqrt(6).

    Text Solution

    |

  4. Square root of 6 + sqrt(12) - sqrt(24) - sqrt(8) is

    Text Solution

    |

  5. Find the square root of : 21+3sqrt(8)-6sqrt(3)-6sqrt(7)-sqrt(24)-sqrt(...

    Text Solution

    |

  6. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  7. Prove that sqrt(10+sqrt((24))+sqrt((40))+sqrt((60)))=sqrt(2)+sqrt(3)+s...

    Text Solution

    |

  8. Without extracting the roots, determine which is greater sqrt(11)-sqrt...

    Text Solution

    |

  9. Prove that for x ge 1, the expression sqrt(x+2sqrt((x-1)))+sqrt(x-2sqr...

    Text Solution

    |

  10. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  11. Find the real cube root of 99-70sqrt(2).

    Text Solution

    |

  12. Find the real cube root of 9sqrt(3)+11sqrt(2).

    Text Solution

    |

  13. Find the real cube root of 38sqrt(14)-100sqrt(2).

    Text Solution

    |

  14. If sqrt(3)=1.732, find the value of (26+15sqrt(3))^(2//3)-(26+15sqrt(3...

    Text Solution

    |

  15. Prove (i) root3(20+14sqrt((2)))+root3(20-14sqrt((2)))=4 (ii) {6+sqrt...

    Text Solution

    |

  16. Let u(n)=(1)/(sqrt((5)))[((1+sqrt(5))/(2))^(n)-((1-sqrt(5))/(2))^(n)] ...

    Text Solution

    |

  17. If x=[-(q)/(2)+sqrt((q^(2))/(4)+(p^(3))/(27))]^(1//3)+[-(q)/(2)-sqrt((...

    Text Solution

    |

  18. Prove that root3(2) cannot be expressed in the form p+sqrt(q) where p ...

    Text Solution

    |

  19. Rationalize the denominator of (1)/(sqrt((a))+sqrt((b))+sqrt((c ))+sqr...

    Text Solution

    |

  20. If A/a = B/b = C/c= D/d then prove that sqrt(Aa)+sqrt(Bb)+sqrt(Cc)+sq...

    Text Solution

    |