Home
Class 12
MATHS
root3(20+14sqrt(2))+root3(20-14sqrt(2))=...

`root3(20+14sqrt(2))+root3(20-14sqrt(2))=4`. (a) true (b) false

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} = 4 \), we will follow these steps: ### Step 1: Let \( a = \sqrt[3]{20 + 14\sqrt{2}} \) and \( b = \sqrt[3]{20 - 14\sqrt{2}} \) We can rewrite the equation as: \[ a + b = 4 \] ### Step 2: Calculate \( a^3 + b^3 \) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), we first find \( a^3 \) and \( b^3 \): \[ a^3 = 20 + 14\sqrt{2} \] \[ b^3 = 20 - 14\sqrt{2} \] Now, adding these: \[ a^3 + b^3 = (20 + 14\sqrt{2}) + (20 - 14\sqrt{2}) = 40 \] ### Step 3: Calculate \( ab \) Next, we find \( ab \): \[ ab = \sqrt[3]{(20 + 14\sqrt{2})(20 - 14\sqrt{2})} \] Using the difference of squares: \[ (20 + 14\sqrt{2})(20 - 14\sqrt{2}) = 20^2 - (14\sqrt{2})^2 = 400 - 392 = 8 \] Thus, \[ ab = \sqrt[3]{8} = 2 \] ### Step 4: Use the identity for \( a^3 + b^3 \) Now we can use the identity: \[ a^3 + b^3 = (a + b)((a + b)^2 - 3ab) \] Substituting the known values: \[ 40 = 4(4^2 - 3 \cdot 2) \] Calculating inside the parentheses: \[ 40 = 4(16 - 6) = 4 \cdot 10 = 40 \] ### Conclusion Since both sides of the equation are equal, we conclude that the original statement is true: \[ \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} = 4 \text{ is true.} \] ### Final Answer (a) true
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Prove (i) root3(20+14sqrt((2)))+root3(20-14sqrt((2)))=4 (ii) {6+sqrt((847)/(27))}^(1//3)+{6-sqrt((847)/(27))}^(1//3)=3

root3(2744)+sqrt(9^(2))=

root(3)(1+sqrt(2)).root(6)(3-2sqrt2)= ?

If x=root(3)(7+5sqrt(2))-(1)/(root(3)(7+5sqrt(2))), then the value of x^(3)+3x-14 is equal to 1 b.0 c.2 d.4

If x=root(3)(7+5sqrt(2))-(1)/(root(3)(7+5sqrt(2))), then the value of x^(3)+3x-14 is equal to 1(b)0(c)2 (d) 4

sqrt(x+14-8sqrt(x-2))+ sqrt(x+23-10sqrt(x-2))=3 Find number of real root

root(3)(3+sqrt(2)) is a surd . (True/False)

sqrt(2 root(3)(4 sqrt(2 root (3)(4 sqrt(2 root (3)(4...)))))) =?

root3(xy^2) ÷ sqrt(x^2y) = ??