Home
Class 12
MATHS
If p=sqrt(7)-sqrt(5) and q=sqrt(13)-sqrt...

If `p=sqrt(7)-sqrt(5)` and `q=sqrt(13)-sqrt(11)`, then

A

`p gt q`

B

`p lt q`

C

`p=q`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To compare \( p = \sqrt{7} - \sqrt{5} \) and \( q = \sqrt{13} - \sqrt{11} \), we will calculate the approximate values of \( p \) and \( q \). ### Step 1: Calculate \( p \) 1. **Find \( \sqrt{7} \)**: - We know that \( \sqrt{4} = 2 \) and \( \sqrt{9} = 3 \). Therefore, \( \sqrt{7} \) is between 2 and 3. - A more precise approximation can be found by estimating: \( \sqrt{7} \approx 2.6457513110645906 \). 2. **Find \( \sqrt{5} \)**: - We know that \( \sqrt{4} = 2 \) and \( \sqrt{9} = 3 \). Therefore, \( \sqrt{5} \) is between 2 and 3. - A more precise approximation can be found by estimating: \( \sqrt{5} \approx 2.23606797749979 \). 3. **Calculate \( p \)**: \[ p = \sqrt{7} - \sqrt{5} \approx 2.6457513110645906 - 2.23606797749979 \approx 0.4096833335648006 \] ### Step 2: Calculate \( q \) 1. **Find \( \sqrt{13} \)**: - We know that \( \sqrt{9} = 3 \) and \( \sqrt{16} = 4 \). Therefore, \( \sqrt{13} \) is between 3 and 4. - A more precise approximation can be found by estimating: \( \sqrt{13} \approx 3.605551275463989 \). 2. **Find \( \sqrt{11} \)**: - We know that \( \sqrt{9} = 3 \) and \( \sqrt{16} = 4 \). Therefore, \( \sqrt{11} \) is between 3 and 4. - A more precise approximation can be found by estimating: \( \sqrt{11} \approx 3.3166247903554 \). 3. **Calculate \( q \)**: \[ q = \sqrt{13} - \sqrt{11} \approx 3.605551275463989 - 3.3166247903554 \approx 0.288926485108589 \] ### Step 3: Compare \( p \) and \( q \) Now we have: - \( p \approx 0.4096833335648006 \) - \( q \approx 0.288926485108589 \) Since \( p > q \), we conclude that: \[ p > q \] ### Final Answer: Thus, the relationship between \( p \) and \( q \) is \( p > q \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(7)-sqrt(5) and y=sqrt(13)-sqrt(11) then

Do as directed: (i) Add : sqrt(125 + 2 sqrt(27) and - 5 sqrt(5) - sqrt(3) (ii) Add: sqrt(7) - sqrt(11) and sqrt(5) - sqrt(11) + sqrt(13) (iii) Multiply : 2 sqrt(2) by 5 sqrt(2) (iv) Multiply : (-3 + sqrt(5)) by 3 (v) Divide : 7 sqrt(5) by - 14 sqrt(125) Divide : 7 sqrt(5) by -14 sqrt(125) (vi) Divide : 2 sqrt(216) - 3 sqrt(27) by 3

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

Add (i) (2sqrt(3)-5sqrt(2)) and (sqrt(3) + 2sqrt(2)) (ii) (2sqrt(2) + 5sqrt(3) - 7 sqrt(5) and (3sqrt(3)-sqrt(2) + sqrt(5)) (iii) ((2)/(3) sqrt(7) -(1)/(2)sqrt(2)+6sqrt(11)) and ((1)/(3)sqrt(7) + (3)/(2)-sqrt(11))

Evaluate (sqrt(7)-sqrt(5))/ (sqrt(7)-sqrt(5))

Among sqrt(7)-sqrt(3) and sqrt(11)-sqrt(7) which is greater?