Home
Class 12
MATHS
If sqrt(5)=2.236 and sqrt(10)=3.162 , t...

If `sqrt(5)=2.236` and `sqrt(10)=3.162` , then the value of `(15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80))` is

A

`sqrt(5)(5+sqrt(2))`

B

`sqrt(5)(2+sqrt(2))`

C

`sqrt(5)(1+sqrt(2))`

D

`sqrt(5)(3+sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Self Assessment test|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If sqrt(10)= 3.162 , find the value of (1)/(sqrt(10))

If sqrt(5)=2.236 and sqrt(6)=2.449, then the value of (1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3)) is

Find the value of (1)/(sqrt(10)) where sqrt(10)=3.5

The value of log_(10)(sqrt(3-sqrt(5))+sqrt(3+sqrt(5))) is

Evaluate : (sqrt(7)+sqrt(5))/(sqrt(7)+sqrt(20)+sqrt(28)-sqrt(5)-sqrt(80))

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Given that sqrt(3)=1.732 and sqrt(5)=2.236 then find the value of ((6)/(sqrt(5)-sqrt(3))) .