Home
Class 12
MATHS
If log(7)2=m then log(49)28 is equal to...

If `log_(7)2=m` then `log_(49)28` is equal to

A

`(2)/(1+2m)`

B

`(1+2m)/(2)`

C

`2(1+2m)`

D

`(1+m)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{49} 28 \) given that \( \log_{7} 2 = m \). ### Step-by-Step Solution: 1. **Express \( \log_{49} 28 \) in terms of base 7**: \[ \log_{49} 28 = \frac{\log_{7} 28}{\log_{7} 49} \] 2. **Simplify \( \log_{7} 49 \)**: \[ \log_{7} 49 = \log_{7} (7^2) = 2 \log_{7} 7 = 2 \cdot 1 = 2 \] 3. **Express \( 28 \) in terms of its prime factors**: \[ 28 = 4 \cdot 7 = 2^2 \cdot 7 \] 4. **Use the property of logarithms to expand \( \log_{7} 28 \)**: \[ \log_{7} 28 = \log_{7} (2^2 \cdot 7) = \log_{7} (2^2) + \log_{7} 7 = 2 \log_{7} 2 + 1 \] 5. **Substitute \( \log_{7} 2 \) with \( m \)**: \[ \log_{7} 28 = 2m + 1 \] 6. **Substitute back into the expression for \( \log_{49} 28 \)**: \[ \log_{49} 28 = \frac{\log_{7} 28}{\log_{7} 49} = \frac{2m + 1}{2} \] 7. **Final answer**: \[ \log_{49} 28 = \frac{2m + 1}{2} \] ### Summary: Thus, the value of \( \log_{49} 28 \) in terms of \( m \) is: \[ \frac{2m + 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(7) 2 = m , then find log_(49) 28 in terms of m.

If a^(log_(3)7)=9, then a^((log_(3)7)^(2)) is equal to

(1 + log_(n)m) * log_(mn) x is equal to

7 lf If log (x y m 2n and log (x4 y n 2m, then log X is equal to (A) (B) m-n (c) men (D) m n

Let x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6))) then value of log_(2)x is equal to :

Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to

If log_(x)(z)=4,log_(10y)(z)=2 and log(xy)(z)=(4)/(7), then z^(-2) is equal to :

(log_(8)17)/(log_(9)23) - (log_(2sqrt(2))17)/(log_(3)23) is equal to