Home
Class 12
MATHS
If A=log(2)log(4)256+2log(sqrt(2)).2, th...

If `A=log_(2)log_(4)256+2log_(sqrt(2)).2`, then A is equal to

A

`2`

B

`4`

C

`5`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( A = \log_{2}(\log_{4}256) + 2\log_{\sqrt{2}}2 \), we will break it down step by step. ### Step 1: Simplify \( \log_{4}256 \) We start by simplifying \( \log_{4}256 \). \[ 256 = 4^4 \quad \text{(since } 4^4 = 256\text{)} \] Thus, \[ \log_{4}256 = \log_{4}(4^4) = 4 \] ### Step 2: Substitute back into the expression for \( A \) Now, substitute \( \log_{4}256 \) back into the expression for \( A \): \[ A = \log_{2}(4) + 2\log_{\sqrt{2}}2 \] ### Step 3: Simplify \( \log_{2}(4) \) Next, we simplify \( \log_{2}(4) \): \[ 4 = 2^2 \quad \text{(since } 2^2 = 4\text{)} \] Thus, \[ \log_{2}(4) = \log_{2}(2^2) = 2 \] ### Step 4: Simplify \( 2\log_{\sqrt{2}}2 \) Now, we simplify \( 2\log_{\sqrt{2}}2 \): Using the change of base formula, we have: \[ \log_{\sqrt{2}}2 = \frac{\log_{2}2}{\log_{2}\sqrt{2}} \] Since \( \sqrt{2} = 2^{1/2} \), we find: \[ \log_{2}\sqrt{2} = \log_{2}(2^{1/2}) = \frac{1}{2} \] Thus, \[ \log_{\sqrt{2}}2 = \frac{1}{\frac{1}{2}} = 2 \] So, \[ 2\log_{\sqrt{2}}2 = 2 \times 2 = 4 \] ### Step 5: Combine the results Now, we can combine the results from Step 3 and Step 4: \[ A = 2 + 4 = 6 \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If A=log_(2)log_(2)log_(4)256+2log_(sqrt(2))2 , then A is equal to

If A=log_(2)log_(2)log_(4)256+2log_(sqrt(2))2, hen find the value of A.

If A=log_(2)log_(2)log_(4)(256)+2log_(sqrt(2))(2), then find the value of A.

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

The value of "log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2 , is

log_(4)log_(4)log_(4)256=0

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

log_(2)sqrt(x)+log_(2)sqrt(x)=4

The value of log_((1)/(6))2*log_(5)36*log_(17)125*log_((1)/(sqrt(2)))17 is equal to