Home
Class 12
MATHS
In a right angled triangle the sides are...

In a right angled triangle the sides are a,b and c with c hypotenuse and `x-b ne 1`, `c+b ne 1`. Then the value of `(log_(c+b)a+log_(c-b)a)//2log_(c+b)axxlog_(c-a)` a will be

A

`2`

B

`(1)/(2)`

C

`-1`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question step by step. The expression is: \[ \frac{\log_{(c+b)} a + \log_{(c-b)} a}{2 \log_{(c+b)} a \cdot \log_{(c-a)} a} \] ### Step 1: Use the Change of Base Formula We can use the change of base formula for logarithms, which states that: \[ \log_b a = \frac{\log_k a}{\log_k b} \] for any base \( k \). We will use base 10 (or natural logarithm) for our calculations. Applying the change of base formula: \[ \log_{(c+b)} a = \frac{\log a}{\log (c+b)} \] \[ \log_{(c-b)} a = \frac{\log a}{\log (c-b)} \] ### Step 2: Substitute into the Expression Substituting these into the expression gives: \[ \frac{\frac{\log a}{\log (c+b)} + \frac{\log a}{\log (c-b)}}{2 \cdot \frac{\log a}{\log (c+b)} \cdot \frac{\log a}{\log (c-a)}} \] ### Step 3: Simplify the Numerator The numerator becomes: \[ \frac{\log a}{\log (c+b)} + \frac{\log a}{\log (c-b)} = \log a \left( \frac{1}{\log (c+b)} + \frac{1}{\log (c-b)} \right) \] ### Step 4: Simplify the Denominator The denominator becomes: \[ 2 \cdot \frac{\log a}{\log (c+b)} \cdot \frac{\log a}{\log (c-a)} = 2 \cdot \frac{(\log a)^2}{\log (c+b) \cdot \log (c-a)} \] ### Step 5: Combine the Expression Now we can combine the simplified numerator and denominator: \[ \frac{\log a \left( \frac{1}{\log (c+b)} + \frac{1}{\log (c-b)} \right)}{2 \cdot \frac{(\log a)^2}{\log (c+b) \cdot \log (c-a)}} \] ### Step 6: Further Simplification This can be simplified to: \[ \frac{\log a \cdot \log (c+b) \cdot \log (c-a)}{2 \cdot (\log a)^2} \left( \frac{1}{\log (c+b)} + \frac{1}{\log (c-b)} \right) \] ### Step 7: Cancel Out \(\log a\) Cancelling one \(\log a\) from the numerator and denominator gives: \[ \frac{\log (c+b) \cdot \log (c-a)}{2 \cdot \log a} \left( \frac{1}{\log (c+b)} + \frac{1}{\log (c-b)} \right) \] ### Step 8: Final Expression This can be further simplified to obtain the final expression, but since the question asks for the value of \( a \), we can conclude that the expression simplifies to a constant value depending on the parameters \( c \) and \( b \). ### Conclusion Thus, the value of \( a \) will depend on the specific values of \( b \) and \( c \) in the triangle.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If in a right angled triangle, a and b are the lengths of sides and c is the length of hypotenuse and c-b ne 1, c+b ne 1 , then show that log_(c+b)a+log_(c-b)a=2log_(c+b)a.log_(c-b)a.

a^(log_(b)c)=c^(log_(b)a)

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

If in a right angle triangle,a and b are the length of the sides and and c is the length of the hypotenuse and c-b!=1,c+b!=1 then show that log_(c+b)(a)+log_(c-b)(a)=2log_(c+b)(a)log_(c-b)(a)

Show that log_(b)a log_(c)b log_(a)c=1

If agt1,bgt1,cgt1,dgt1 then the minimum value of log_(b)a+log_(a)b+log_(d)c+log_(c)d , is

the value of a^(log((b)/(c)))*b^(log((c)/(a)))c^(log((a)/(b)))