Home
Class 12
MATHS
If (1+x+x^(2))^(6n)=a(0)+a(1)x+a(2)x^(2)...

If `(1+x+x^(2))^(6n)=a_(0)+a_(1)x+a_(2)x^(2)+……,` then
`a_(2)+a_(4)+a_(6)+` ….. = …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of even powers of \( x \) in the expansion of \( (1 + x + x^2)^{6n} \). Let's denote this sum as \( S = a_0 + a_2 + a_4 + \ldots \). ### Step-by-step Solution: 1. **Identify the expression**: We start with the expression \( (1 + x + x^2)^{6n} \). 2. **Evaluate at \( x = 1 \)**: \[ (1 + 1 + 1^2)^{6n} = 3^{6n} \] This gives us the sum of all coefficients: \[ S_{\text{total}} = a_0 + a_1 + a_2 + a_3 + \ldots = 3^{6n} \] 3. **Evaluate at \( x = -1 \)**: \[ (1 - 1 + (-1)^2)^{6n} = (1)^{6n} = 1 \] This gives us the sum of coefficients of even powers minus the sum of coefficients of odd powers: \[ S_{\text{even}} - S_{\text{odd}} = 1 \] 4. **Set up the equations**: Let \( S_{\text{even}} = a_0 + a_2 + a_4 + \ldots \) and \( S_{\text{odd}} = a_1 + a_3 + a_5 + \ldots \). We have: \[ S_{\text{total}} = S_{\text{even}} + S_{\text{odd}} = 3^{6n} \quad (1) \] \[ S_{\text{even}} - S_{\text{odd}} = 1 \quad (2) \] 5. **Solve the equations**: From equation (1), we can express \( S_{\text{odd}} \) in terms of \( S_{\text{even}} \): \[ S_{\text{odd}} = 3^{6n} - S_{\text{even}} \] Substitute this into equation (2): \[ S_{\text{even}} - (3^{6n} - S_{\text{even}}) = 1 \] Simplifying gives: \[ 2S_{\text{even}} - 3^{6n} = 1 \] \[ 2S_{\text{even}} = 3^{6n} + 1 \] \[ S_{\text{even}} = \frac{3^{6n} + 1}{2} \] 6. **Final result**: Thus, the sum of the coefficients of even powers of \( x \) is: \[ a_0 + a_2 + a_4 + \ldots = \frac{3^{6n} + 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS)|20 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|4 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If (1+x-3x^(2))^(2145)=a_(0)+a_(1)x+a_(2)x^(2)+ then a_(0)-a_(1)+a_(2)-... ends with

(1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r)x^(r) then a_(2)+a_(4)+....+a_(12)=

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(2n)x^(2n), then a_(0)+a_(2)+a_(4)+....+a_(2n) is

If (1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r).x^(r) then a_(1)+a_(3)+......a_(11)

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1 + x)^(2n) = a_(0) + a_(1) x + a_(2) x^(2) +… + a_(2n) x^(2n) , then (a_(0) - a_(2) + a_(4) - a_(6) +…- a_(2n))^(2)+(a_(1) - a_(3) + a_(5) - a_(7) +...+a_(2n-1))^(2) is equal to

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is