Home
Class 12
MATHS
Larger of 99^(50) +100^(50) and 101^(50)...

Larger of `99^(50) +100^(50) and 101^(50)` is ………..

Text Solution

AI Generated Solution

The correct Answer is:
To determine which is larger between \( 99^{50} + 100^{50} \) and \( 101^{50} \), we can use the Binomial Theorem to expand \( 101^{50} \) and compare it with the sum \( 99^{50} + 100^{50} \). ### Step-by-Step Solution: 1. **Express \( 101^{50} \) using the Binomial Theorem**: \[ 101^{50} = (100 + 1)^{50} \] By applying the Binomial Theorem, we can expand this: \[ 101^{50} = \sum_{k=0}^{50} \binom{50}{k} 100^{50-k} \cdot 1^k \] This gives us: \[ 101^{50} = \binom{50}{0} 100^{50} + \binom{50}{1} 100^{49} + \binom{50}{2} 100^{48} + \ldots + \binom{50}{50} 1 \] 2. **Identify the first few terms of the expansion**: The first few terms of the expansion are: \[ 100^{50} + 50 \cdot 100^{49} + \frac{50 \cdot 49}{2} \cdot 100^{48} + \ldots + 1 \] Thus, \[ 101^{50} = 100^{50} + 50 \cdot 100^{49} + \text{(other positive terms)} \] 3. **Express \( 99^{50} \) using the Binomial Theorem**: Similarly, we can express \( 99^{50} \) as: \[ 99^{50} = (100 - 1)^{50} \] Expanding this using the Binomial Theorem gives: \[ 99^{50} = \sum_{k=0}^{50} \binom{50}{k} 100^{50-k} (-1)^k \] The first few terms are: \[ 100^{50} - 50 \cdot 100^{49} + \frac{50 \cdot 49}{2} \cdot 100^{48} - \ldots + (-1)^{50} \] 4. **Combine \( 99^{50} + 100^{50} \)**: Now, we can combine \( 99^{50} + 100^{50} \): \[ 99^{50} + 100^{50} = \left(100^{50} - 50 \cdot 100^{49} + \frac{50 \cdot 49}{2} \cdot 100^{48} - \ldots \right) + 100^{50} \] This simplifies to: \[ 2 \cdot 100^{50} - 50 \cdot 100^{49} + \frac{50 \cdot 49}{2} \cdot 100^{48} - \ldots \] 5. **Compare \( 99^{50} + 100^{50} \) and \( 101^{50} \)**: Now we compare: \[ 99^{50} + 100^{50} = 2 \cdot 100^{50} - 50 \cdot 100^{49} + \ldots \] with \[ 101^{50} = 100^{50} + 50 \cdot 100^{49} + \ldots \] The key observation is that the negative terms in \( 99^{50} + 100^{50} \) will reduce the total, while \( 101^{50} \) has positive contributions from its expansion. 6. **Conclusion**: Since \( 101^{50} \) has more positive contributions and fewer negative terms compared to \( 99^{50} + 100^{50} \), we conclude: \[ 101^{50} > 99^{50} + 100^{50} \] Thus, the larger of \( 99^{50} + 100^{50} \) and \( 101^{50} \) is: \[ \boxed{101^{50}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS)|20 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|4 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

Which is larger: (99^(50)+100^(50)) or (101)^(50)

sec 50^(@) + tan 50^(@) is equal to

Using binomial theorem,prove that (101)^(50)>100^(50)+99^(50).

Using binomial theorem, prove that (101)^(50) gt(100^(50)+99^(50)).

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

Number of zeros at the end of the following expression (5!)^(5!) + (10!)^(10!)+(50!)^(50!)+(100!)^(100!) is :