Home
Class 12
MATHS
If theta={(3^(2n))/(8)}, where {x} = Fra...

If `theta={(3^(2n))/(8)}`, where {x} = Fractional part of x then the value of `sec^(-1)(8theta)` is

A

`pi`

B

`2pi`

C

`3pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec^{-1}(8\theta) \) given that \( \theta = \left\{ \frac{3^{2n}}{8} \right\} \), where \( \{x\} \) denotes the fractional part of \( x \). ### Step-by-Step Solution: 1. **Understanding the Fractional Part**: The fractional part \( \{x\} \) is defined as \( x - \lfloor x \rfloor \), where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). Thus, we can express: \[ \theta = \left\{ \frac{3^{2n}}{8} \right\} = \frac{3^{2n}}{8} - \left\lfloor \frac{3^{2n}}{8} \right\rfloor \] 2. **Rewriting \( 3^{2n} \)**: We can express \( 3^{2n} \) as \( 9^n \): \[ \theta = \left\{ \frac{9^n}{8} \right\} \] 3. **Using the Binomial Theorem**: We can rewrite \( \frac{9^n}{8} \) as: \[ \frac{9^n}{8} = \frac{1 + 8^n}{8} \] This can be expanded using the binomial theorem: \[ \frac{1 + 8^n}{8} = \frac{1}{8} + \frac{8^n}{8} \] 4. **Identifying the Integer Part**: The term \( \frac{8^n}{8} = 8^{n-1} \) is an integer. Therefore, we can express: \[ \theta = \frac{1}{8} + \text{integer} - \lfloor \frac{1}{8} + \text{integer} \rfloor \] Since \( \frac{1}{8} \) is less than 1, the integer part will not affect the fractional part. Thus: \[ \theta = \frac{1}{8} \] 5. **Calculating \( 8\theta \)**: Now we can find \( 8\theta \): \[ 8\theta = 8 \times \frac{1}{8} = 1 \] 6. **Finding \( \sec^{-1}(8\theta) \)**: We need to find \( \sec^{-1}(1) \). The secant function is defined as: \[ \sec(x) = \frac{1}{\cos(x)} \] Therefore, \( \sec^{-1}(1) \) corresponds to the angle where the secant is equal to 1, which is: \[ \sec^{-1}(1) = 0 \] ### Final Answer: Thus, the value of \( \sec^{-1}(8\theta) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |47 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|1 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If sec theta-cos theta = 3/2 where theta is a positive acute angle. then the value of sec theta is:

The minimum value of (8sec^(2)theta+2cos^(2))

If tan theta+sec theta=(2)/(3), then the value of sec theta is

If {x} denotes the fractional part of x, then {(3^(2n))/(8)},n in N, is

If sec theta + tan theta =x, " find the value of " sec theta.

If sec theta+tan theta=(1)/(2) The value of sec theta=

If cos theta+sec theta=-2 for theta in[0,2 pi] then find the value of sin^(8)theta+cos^(8)theta

If tan8 theta = cot 2 theta , where 0 lt 8 theta lt pi/2 , then what is the value of tan 5 theta ?

If sec theta+tan theta=x, write the value of sec theta-tan theta in terms of x.