Home
Class 12
MATHS
|(b+c,a,a),(b,c+a,b),(c,c,a+b)|=...

`|(b+c,a,a),(b,c+a,b),(c,c,a+b)|=`

A

abc

B

2abc

C

3abc

D

4abc

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \), we will use the method of expansion along the first row. ### Step 1: Expand the Determinant Using the first row for expansion, we have: \[ D = (b+c) \begin{vmatrix} c+a & b \\ c & a+b \end{vmatrix} - a \begin{vmatrix} b & b \\ c & a+b \end{vmatrix} + a \begin{vmatrix} b & c+a \\ c & c \end{vmatrix} \] ### Step 2: Calculate the First 2x2 Determinant Now, we calculate the first 2x2 determinant: \[ \begin{vmatrix} c+a & b \\ c & a+b \end{vmatrix} = (c+a)(a+b) - bc \] Expanding this gives: \[ = ac + ab + a^2 + bc - bc = ac + ab + a^2 \] ### Step 3: Calculate the Second 2x2 Determinant Next, we calculate the second 2x2 determinant: \[ \begin{vmatrix} b & b \\ c & a+b \end{vmatrix} = b(a+b) - bc = ab + b^2 - bc \] ### Step 4: Calculate the Third 2x2 Determinant Now, we calculate the third 2x2 determinant: \[ \begin{vmatrix} b & c+a \\ c & c \end{vmatrix} = b(c) - c(c+a) = bc - (c^2 + ac) \] ### Step 5: Substitute Back into the Determinant Now we substitute these values back into our expression for \( D \): \[ D = (b+c)(ac + ab + a^2) - a(ab + b^2 - bc) + a(bc - c^2 - ac) \] ### Step 6: Simplify the Expression Now we simplify the expression step by step: 1. **Expand the first term**: \[ (b+c)(ac + ab + a^2) = abc + ab^2 + a^2b + ac^2 + a^2c + abc \] This simplifies to: \[ 2abc + ab^2 + a^2b + ac^2 + a^2c \] 2. **Expand the second term**: \[ -a(ab + b^2 - bc) = -a^2b - ab^2 + abc \] 3. **Expand the third term**: \[ a(bc - c^2 - ac) = abc - ac^2 - a^2c \] ### Step 7: Combine All Terms Combining all the terms gives: \[ D = 2abc + ab^2 + a^2b + ac^2 + a^2c - a^2b - ab^2 + abc + abc - ac^2 - a^2c \] ### Step 8: Final Simplification Now, we combine like terms: - The \( abc \) terms: \( 2abc + abc + abc = 4abc \) - The \( ab^2 \) terms: \( ab^2 - ab^2 = 0 \) - The \( a^2b \) terms: \( a^2b - a^2b = 0 \) - The \( ac^2 \) terms: \( ac^2 - ac^2 = 0 \) - The \( a^2c \) terms: \( a^2c - a^2c = 0 \) Thus, we find that: \[ D = 4abc \] ### Final Answer The value of the determinant is \( \boxed{4abc} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

What is the value of the determinant |(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c)| ?

What is the value of the determinant |{:(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c):}| ?

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

Prove that : |{:(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b):}|=2(a+b+c)^(3)

Let a = {a, b, c} and R = {(a, a), (b, b), (c, c), (b, c), (a, b)} be a relation on A, then the

If |(a+b+2c,a,b),(c,2a+b+c,b),(c,a,a+2b+c)|=432/125 then a+b+c= ________

Prove that : |{:(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c):}|=2|{:(a,b,c),(b,c,a),(c,a,b):}| .

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  2. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  3. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  4. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  5. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  6. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  7. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  8. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  9. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  10. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  11. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  12. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  13. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  14. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  15. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  16. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  17. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  18. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  19. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |