Home
Class 12
MATHS
|(1,1,1),(a,b,c),(a^3,b^3,c^3)|=...

`|(1,1,1),(a,b,c),(a^3,b^3,c^3)|`=

A

`a^3+b^3+c^3 -3abc `

B

`a^3+b^3+c^3 +3abc `

C

`(a+b+c)(a-b)(b-c)(c-a)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Write the Determinant:** \[ D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} \] 2. **Perform Column Operations:** We can simplify the determinant by performing column operations. Let's perform the following operations: - \( C_1 \leftarrow C_1 - C_2 \) - \( C_2 \leftarrow C_2 - C_3 \) After performing these operations, the determinant becomes: \[ D = \begin{vmatrix} 0 & 0 & 1 \\ a-b & b-c & c \\ a^3-b^3 & b^3-c^3 & c^3 \end{vmatrix} \] 3. **Evaluate the Determinant:** Since the first two columns have become zero, we can expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} a-b & b-c \\ a^3-b^3 & b^3-c^3 \end{vmatrix} \] 4. **Use the Difference of Cubes Formula:** Recall the identity for the difference of cubes: \[ x^3 - y^3 = (x-y)(x^2 + xy + y^2) \] Thus, we can express \( a^3 - b^3 \) and \( b^3 - c^3 \) as: \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \] \[ b^3 - c^3 = (b-c)(b^2 + bc + c^2) \] 5. **Substituting Back:** Substitute these into the determinant: \[ D = (a-b)(b-c) \begin{vmatrix} 1 & 1 \\ a^2 + ab + b^2 & b^2 + bc + c^2 \end{vmatrix} \] 6. **Calculate the Remaining Determinant:** The remaining determinant is: \[ D = (a-b)(b-c) \left( (1)(b^2 + bc + c^2) - (1)(a^2 + ab + b^2) \right) \] Simplifying this gives: \[ D = (a-b)(b-c)(b^2 + bc + c^2 - a^2 - ab - b^2) \] \[ D = (a-b)(b-c)(c^2 - a^2 - ab) \] 7. **Final Result:** The final expression can be factored further: \[ D = (a-b)(b-c)(c-a)(a+b+c) \] ### Final Answer: \[ D = (a-b)(b-c)(c-a)(a+b+c) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

find the rank of [[1,1,1],[a,b,c],[a^3,b^3,c^3]]

If delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

If a,b,are distinct,show that [[1,1,1a,b,ca^(3),b^(3),c^(3)]]=(b-c)*(c-a)*(a-b)(a+b+c)

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, then the value of Delta_1=|(a_1+2b_1+3c_1,2c_1+3c_1,c_1),(a_2+2b_2+3c_2,2b_2+3c_2,c_2),(a_3+2b_3+ 3c_3,2b_3+3c_3,c_3)| is equal to

Prove that : |{:(1,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  2. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  3. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  4. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  5. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  6. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  7. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  8. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  9. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  10. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  11. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  12. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  13. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  14. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  15. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  16. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  17. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  18. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  19. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |