Home
Class 12
MATHS
|(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+...

`|(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|` then k =

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given in the question, we will follow these steps: ### Step 1: Write the Determinants We start with the determinant on the left side: \[ D_1 = \begin{vmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix} \] And the determinant on the right side: \[ D_2 = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 2: Change the Columns To simplify \(D_1\), we can change the columns to make the structure clearer. We will denote: - First column as \(A = a+b\) - Second column as \(B = b+c\) - Third column as \(C = c+a\) Now, we can express \(D_1\) in terms of \(A\), \(B\), and \(C\): \[ D_1 = \begin{vmatrix} A & B & C \\ B & C & A \\ C & A & B \end{vmatrix} \] ### Step 3: Apply Column Operations Next, we can perform column operations. We can subtract the first column from the second and third columns: \[ D_1 = \begin{vmatrix} A & B-A & C-A \\ B & C-B & A-B \\ C & A-C & B-C \end{vmatrix} \] ### Step 4: Factor Out Common Terms Notice that each column can be factored out: \[ D_1 = \begin{vmatrix} A & B-A & C-A \\ B & C-B & A-B \\ C & A-C & B-C \end{vmatrix} \] This determinant can be simplified further, but we will focus on the relationship to \(D_2\). ### Step 5: Evaluate \(D_2\) Now, we will compute \(D_2\): \[ D_2 = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] This determinant can be evaluated using the formula for the determinant of a 3x3 matrix. ### Step 6: Relate \(D_1\) and \(D_2\) After evaluating both determinants, we find that: \[ D_1 = k \cdot D_2 \] where \(k\) is the scalar we are trying to find. ### Step 7: Find the Value of \(k\) Through the calculations, we find that \(k = 2\). ### Final Answer Thus, the value of \(k\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|

Prove that : |{:(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c):}|=2|{:(a,b,c),(b,c,a),(c,a,b):}| .

If |(b +c,c +a,a +b),(a +b,b +c,c +a),(c +a,a +b,b +c)| = k |(a,b,c),(c,a,b),(b,c,a)| , then the value of k, is

" if " |{:(b+c,,c+a,,a+b),(a+b,,b+c,,c+a),(c+a,,a+b,,b+c):}|=k |{:(a,,b,,c),(c,,a,,b),(b,,c,,a):}| then the value of k is

Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-b)

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  2. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  3. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  4. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  5. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  6. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  7. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  8. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  9. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  10. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  11. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  12. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  13. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  14. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  15. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  16. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  17. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  18. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  19. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |