Home
Class 12
MATHS
If A=[(1,2),(3,4)],B=[(2,3),(4,5)], and ...

If `A=[(1,2),(3,4)],B=[(2,3),(4,5)]`, and `4A-3B+C=O`, then C=

A

`[(2,-1),(0,1)]`

B

`[(2,1),(0,-1)]`

C

`[(-2,1),(0,-1)]`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4A - 3B + C = O \) for the matrix \( C \), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \] ### Step 2: Calculate \( 4A \) To find \( 4A \), we multiply each element of matrix \( A \) by 4: \[ 4A = 4 \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 4 \cdot 1 & 4 \cdot 2 \\ 4 \cdot 3 & 4 \cdot 4 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 12 & 16 \end{pmatrix} \] ### Step 3: Calculate \( 3B \) Next, we find \( 3B \) by multiplying each element of matrix \( B \) by 3: \[ 3B = 3 \times \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 & 3 \cdot 3 \\ 3 \cdot 4 & 3 \cdot 5 \end{pmatrix} = \begin{pmatrix} 6 & 9 \\ 12 & 15 \end{pmatrix} \] ### Step 4: Substitute \( 4A \) and \( 3B \) into the equation Now, we substitute \( 4A \) and \( 3B \) into the equation \( 4A - 3B + C = O \): \[ C = O - 4A + 3B \] Since \( O \) is the zero matrix: \[ O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Thus, \[ C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 4 & 8 \\ 12 & 16 \end{pmatrix} + \begin{pmatrix} 6 & 9 \\ 12 & 15 \end{pmatrix} \] ### Step 5: Perform the matrix operations Now we perform the operations step by step: 1. Calculate \( O - 4A \): \[ O - 4A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 4 & 8 \\ 12 & 16 \end{pmatrix} = \begin{pmatrix} -4 & -8 \\ -12 & -16 \end{pmatrix} \] 2. Now add \( 3B \): \[ C = \begin{pmatrix} -4 & -8 \\ -12 & -16 \end{pmatrix} + \begin{pmatrix} 6 & 9 \\ 12 & 15 \end{pmatrix} = \begin{pmatrix} -4 + 6 & -8 + 9 \\ -12 + 12 & -16 + 15 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix} \] ### Final Result Thus, the matrix \( C \) is: \[ C = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[[1,2],[3,4]] and B=[[2,3],[4,5]] , then find A+B-C=0 , then find C.

Verify that A(B+C)=(AB+AC), when (i) A=[{:(1,2),(3,4):}],B=[{:(2," "0),(1,-3):}]" and "C=[{:(1,-1),(0," "1):}]. (ii) A=[{:(2,3),(-1,4),(0,1):}],B=[{:(5,-3),(2," "1):}]" and "C=[{:(-1,2),(" "3,4):}].

If A={:((1,-3,4),(2,1,-2)):},B={:((-2,-4,5),(1,-1,3)):} and 5A-3B+2X=O, then X=

Let A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}]" and "C=[{:(-2,5),(3,4):}]. Find: (i) A+2B (ii) B-4C (iii) A-2B+3C

If A = [{:(3, 2),(1, 4):}], B = [{:(-5, 9), (3, 4):}]," and C" = [{:(-3, 6),(2, 1):}], then find 2A + 3B - 4C.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A = {1, 2, 3, 4}, B = {3, 4, 5} and C = {1, 4, 5} then the value of A - (B - C) is

If A = {1, 2, 3, 4}, B = {3, 4, 5} and C = {1, 4, 5} then the value of A – (B nn C) is

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(0,1,2),(2,3,4),(4,5,6)],B=[(1,0,0),(0,1,0),(0,0,01)] then 3A-4B...

    Text Solution

    |

  2. If A=[(1,2),(3,4)],B=[(2,3),(4,5)], and 4A-3B+C=O, then C=

    Text Solution

    |

  3. If A=[(1,0),(2,0)],B=[(0,0),(1,12)] then

    Text Solution

    |

  4. If the matrix AB is zero then

    Text Solution

    |

  5. If A and B are two matrices such that A+B and AB are both defined, the...

    Text Solution

    |

  6. If A is any mxxn matrix such that AB and BA are both defined, then B i...

    Text Solution

    |

  7. If A and B are square matrices of size nxxn such that A^(2)-B^(2)=(A-B...

    Text Solution

    |

  8. If A is 3xx4 matrix and B is a matrix such that A'B and BA' are both d...

    Text Solution

    |

  9. If A=[(1,-2,3),(-4,2,5)](2xx3) and B=[(2,3),(4,5),(2,1)] then

    Text Solution

    |

  10. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  11. If a matrix has 13 elements, then the possible dimensions (order) it c...

    Text Solution

    |

  12. The construction of 3xx4 matrix a whose element a(ij) is given by ((i...

    Text Solution

    |

  13. cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(...

    Text Solution

    |

  14. If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1...

    Text Solution

    |

  15. What is the order of : [xyz] [{:(a,h,g),(h,b,f),(g,f,c):}][{:(x),(y),(...

    Text Solution

    |

  16. If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

    Text Solution

    |

  17. If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O then lam...

    Text Solution

    |

  18. The matrix producet [(1),(-2),(3)][(4,5,2)][(2),(-3),(5)] equals

    Text Solution

    |

  19. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  20. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |