Home
Class 12
MATHS
Assuming that the sums and products give...

Assuming that the sums and products given below are defined which of the following is not true for matrices.

A

AB=AC does not imply B=C

B

`A+B=B+A`

C

`(AB)'=B'A'`

D

`AB=OimpliesA=O` or B=O

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given statements about matrices is not true, we will analyze each option step by step. ### Step 1: Define the Matrices Let's define the matrices as follows: - Matrix A = \(\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}\) - Matrix B = \(\begin{pmatrix} 1 & 7 \\ 6 & 4 \end{pmatrix}\) - Matrix C = \(\begin{pmatrix} 5 & 11 \\ 4 & 2 \end{pmatrix}\) ### Step 2: Check Option 1 We need to check if \(AB = AC\) implies \(B = C\). 1. **Calculate \(AB\)**: \[ AB = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 1 & 7 \\ 6 & 4 \end{pmatrix} \] - First row, first column: \(1 \cdot 1 + 2 \cdot 6 = 1 + 12 = 13\) - First row, second column: \(1 \cdot 7 + 2 \cdot 4 = 7 + 8 = 15\) - Second row, first column: \(3 \cdot 1 + 6 \cdot 6 = 3 + 36 = 39\) - Second row, second column: \(3 \cdot 7 + 6 \cdot 4 = 21 + 24 = 45\) Thus, \[ AB = \begin{pmatrix} 13 & 15 \\ 39 & 45 \end{pmatrix} \] 2. **Calculate \(AC\)**: \[ AC = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 5 & 11 \\ 4 & 2 \end{pmatrix} \] - First row, first column: \(1 \cdot 5 + 2 \cdot 4 = 5 + 8 = 13\) - First row, second column: \(1 \cdot 11 + 2 \cdot 2 = 11 + 4 = 15\) - Second row, first column: \(3 \cdot 5 + 6 \cdot 4 = 15 + 24 = 39\) - Second row, second column: \(3 \cdot 11 + 6 \cdot 2 = 33 + 12 = 45\) Thus, \[ AC = \begin{pmatrix} 13 & 15 \\ 39 & 45 \end{pmatrix} \] Since \(AB = AC\) but \(B \neq C\), this option is true. ### Step 3: Check Option 2 We need to check if \(A + B = B + A\). 1. **Calculate \(A + B\)**: \[ A + B = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 7 \\ 6 & 4 \end{pmatrix} = \begin{pmatrix} 1+1 & 2+7 \\ 3+6 & 6+4 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ 9 & 10 \end{pmatrix} \] 2. **Calculate \(B + A\)**: \[ B + A = \begin{pmatrix} 1 & 7 \\ 6 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 1+1 & 7+2 \\ 6+3 & 4+6 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ 9 & 10 \end{pmatrix} \] Since \(A + B = B + A\), this option is true. ### Step 4: Check Option 3 We need to verify if \((AB)^T = B^T A^T\). 1. **Calculate \((AB)^T\)**: We already found \(AB = \begin{pmatrix} 13 & 15 \\ 39 & 45 \end{pmatrix}\). \[ (AB)^T = \begin{pmatrix} 13 & 39 \\ 15 & 45 \end{pmatrix} \] 2. **Calculate \(B^T\) and \(A^T\)**: \[ B^T = \begin{pmatrix} 1 & 6 \\ 7 & 4 \end{pmatrix}, \quad A^T = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \] 3. **Calculate \(B^T A^T\)**: \[ B^T A^T = \begin{pmatrix} 1 & 6 \\ 7 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \] - First row, first column: \(1 \cdot 1 + 6 \cdot 2 = 1 + 12 = 13\) - First row, second column: \(1 \cdot 3 + 6 \cdot 6 = 3 + 36 = 39\) - Second row, first column: \(7 \cdot 1 + 4 \cdot 2 = 7 + 8 = 15\) - Second row, second column: \(7 \cdot 3 + 4 \cdot 6 = 21 + 24 = 45\) Thus, \[ B^T A^T = \begin{pmatrix} 13 & 39 \\ 15 & 45 \end{pmatrix} \] Since \((AB)^T \neq B^T A^T\), this option is false. ### Step 5: Check Option 4 We need to check if \(AB = 0\) implies \(A = 0\) and \(B = 0\). 1. **Assume \(A\) and \(B\)**: Let \(A = \begin{pmatrix} 0 & 0 \\ 4 & 0 \end{pmatrix}\) and \(B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\). 2. **Calculate \(AB\)**: \[ AB = \begin{pmatrix} 0 & 0 \\ 4 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Here, \(AB = 0\) does not imply that both \(A\) and \(B\) are zero. Therefore, this option is false. ### Conclusion The option that is not true is **Option 4**: \(AB = 0\) implies \(A = 0\) and \(B = 0\).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A and B two are 3xx3 matrices then which one of the following is not true:

If A and B are 2xx2 matrices, then which of the following is true ?

Consider the reaction sequence given below : Which of the following statements is true :

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A is 3xx4 matrix and B is a matrix such that A'B and BA' are both d...

    Text Solution

    |

  2. If A=[(1,-2,3),(-4,2,5)](2xx3) and B=[(2,3),(4,5),(2,1)] then

    Text Solution

    |

  3. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  4. If a matrix has 13 elements, then the possible dimensions (order) it c...

    Text Solution

    |

  5. The construction of 3xx4 matrix a whose element a(ij) is given by ((i...

    Text Solution

    |

  6. cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(...

    Text Solution

    |

  7. If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1...

    Text Solution

    |

  8. What is the order of : [xyz] [{:(a,h,g),(h,b,f),(g,f,c):}][{:(x),(y),(...

    Text Solution

    |

  9. If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

    Text Solution

    |

  10. If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O then lam...

    Text Solution

    |

  11. The matrix producet [(1),(-2),(3)][(4,5,2)][(2),(-3),(5)] equals

    Text Solution

    |

  12. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  13. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |

  14. If A=[(0,1),(1,0)] then A^(4)=

    Text Solution

    |

  15. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  16. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  17. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  18. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  19. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  20. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |