Home
Class 12
MATHS
The construction of 3xx4 matrix a whose ...

The construction of `3xx4` matrix a whose element `a_(ij)` is given by `((i+j)^(2))/2` is

A

`[(2,9//2,8,25),(9,4,5,18),(8,25,18,49)]`

B

`[(2,9//2,25//2),(9//2,5//2,5),(25,18,25)]`

C

`[(2,9//2,8,25//2),(9//2,8,25//2,18),(8,25//2,18,49//2)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To construct a \(3 \times 4\) matrix \(A\) where each element \(a_{ij}\) is given by the formula \(\frac{(i+j)^2}{2}\), we will follow these steps: ### Step 1: Define the Matrix Dimensions We need to create a matrix \(A\) with 3 rows and 4 columns. ### Step 2: Calculate Each Element Using the Given Formula We will calculate each element \(a_{ij}\) using the formula \(\frac{(i+j)^2}{2}\). #### Row 1 (i = 1): - **Element \(a_{11}\)**: \[ a_{11} = \frac{(1+1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2 \] - **Element \(a_{12}\)**: \[ a_{12} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5 \] - **Element \(a_{13}\)**: \[ a_{13} = \frac{(1+3)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] - **Element \(a_{14}\)**: \[ a_{14} = \frac{(1+4)^2}{2} = \frac{5^2}{2} = \frac{25}{2} = 12.5 \] #### Row 2 (i = 2): - **Element \(a_{21}\)**: \[ a_{21} = \frac{(2+1)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5 \] - **Element \(a_{22}\)**: \[ a_{22} = \frac{(2+2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] - **Element \(a_{23}\)**: \[ a_{23} = \frac{(2+3)^2}{2} = \frac{5^2}{2} = \frac{25}{2} = 12.5 \] - **Element \(a_{24}\)**: \[ a_{24} = \frac{(2+4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18 \] #### Row 3 (i = 3): - **Element \(a_{31}\)**: \[ a_{31} = \frac{(3+1)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] - **Element \(a_{32}\)**: \[ a_{32} = \frac{(3+2)^2}{2} = \frac{5^2}{2} = \frac{25}{2} = 12.5 \] - **Element \(a_{33}\)**: \[ a_{33} = \frac{(3+3)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18 \] - **Element \(a_{34}\)**: \[ a_{34} = \frac{(3+4)^2}{2} = \frac{7^2}{2} = \frac{49}{2} = 24.5 \] ### Step 3: Construct the Matrix Now we can construct the matrix \(A\) using the calculated elements: \[ A = \begin{bmatrix} 2 & 4.5 & 8 & 12.5 \\ 4.5 & 8 & 12.5 & 18 \\ 8 & 12.5 & 18 & 24.5 \end{bmatrix} \] ### Final Matrix Thus, the final \(3 \times 4\) matrix \(A\) is: \[ A = \begin{bmatrix} 2 & 4.5 & 8 & 12.5 \\ 4.5 & 8 & 12.5 & 18 \\ 8 & 12.5 & 18 & 24.5 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i)((i+j)^(2))/(2) (ii) a_(ij)=((i-j)^(2))/(2)( iii) a_(ij)=((i-2j)^(2))/(2)

Construct a 2xx2 matrix whose elements a_(ij) are given by a_(ij)=i+j .

Construct a 4xx3 matrix whose elements are a_(ij)=(i)/(j).

Construct a 3xx4 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i) a_(ij)=i+j( ii) a_(ij)=1-j( iii a_(ij)=2i

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

Construct a 3xx4 matrix A=[a_(ij)] whose elements a_(ij) are given by: i a_(ij)=j (ii) a_(ij)=(1)/(2)|-3i+j|

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by a_(ij)=((i+2j)^(2))/(2)

Construct a 2xx3 matrix A = [a_ij], whose elements are given by a_(ij) =(i+2j)^(2)/2

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  2. If a matrix has 13 elements, then the possible dimensions (order) it c...

    Text Solution

    |

  3. The construction of 3xx4 matrix a whose element a(ij) is given by ((i...

    Text Solution

    |

  4. cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(...

    Text Solution

    |

  5. If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1...

    Text Solution

    |

  6. What is the order of : [xyz] [{:(a,h,g),(h,b,f),(g,f,c):}][{:(x),(y),(...

    Text Solution

    |

  7. If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

    Text Solution

    |

  8. If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O then lam...

    Text Solution

    |

  9. The matrix producet [(1),(-2),(3)][(4,5,2)][(2),(-3),(5)] equals

    Text Solution

    |

  10. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  11. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |

  12. If A=[(0,1),(1,0)] then A^(4)=

    Text Solution

    |

  13. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  14. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  15. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  16. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  17. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  18. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  19. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  20. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |