Home
Class 12
MATHS
If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1...

If `[(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O` then x equals to

A

`-3+-sqrt(3)`

B

`(-9+-sqrt(53))/2`

C

`1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we can break it down into a series of steps: ### Step 1: Define the Matrices Let: - Matrix A = \(\begin{bmatrix} 1 & x & 1 \end{bmatrix}\) - Matrix B = \(\begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix}\) - Matrix C = \(\begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix}\) ### Step 2: Multiply A and B To find the product \(AB\): \[ AB = \begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \] Calculating the elements of the resulting matrix: - First element: \(1 \cdot 1 + x \cdot 0 + 1 \cdot 0 = 1\) - Second element: \(1 \cdot 3 + x \cdot 5 + 1 \cdot 3 = 3 + 5x + 3 = 6 + 5x\) - Third element: \(1 \cdot 2 + x \cdot 1 + 1 \cdot 2 = 2 + x + 2 = 4 + x\) Thus, we have: \[ AB = \begin{bmatrix} 1 & 6 + 5x & 4 + x \end{bmatrix} \] ### Step 3: Multiply (AB) and C Now we multiply \(AB\) with \(C\): \[ (AB)C = \begin{bmatrix} 1 & 6 + 5x & 4 + x \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} \] Calculating the elements: - First element: \(1 \cdot 1 + (6 + 5x) \cdot 1 + (4 + x) \cdot x\) \[ = 1 + 6 + 5x + 4x + x^2 = x^2 + 9x + 7 \] Thus, we have: \[ (AB)C = \begin{bmatrix} x^2 + 9x + 7 \end{bmatrix} \] ### Step 4: Set the Result Equal to Zero According to the problem, we set this equal to the zero matrix: \[ x^2 + 9x + 7 = 0 \] ### Step 5: Solve the Quadratic Equation To solve the quadratic equation \(x^2 + 9x + 7 = 0\), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = 9\), and \(c = 7\). Calculating the discriminant: \[ b^2 - 4ac = 9^2 - 4 \cdot 1 \cdot 7 = 81 - 28 = 53 \] Now substituting into the quadratic formula: \[ x = \frac{-9 \pm \sqrt{53}}{2} \] ### Conclusion The values of \(x\) are: \[ x = \frac{-9 + \sqrt{53}}{2} \quad \text{and} \quad x = \frac{-9 - \sqrt{53}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(x),(1),(-2)]=[0] then x is

If [{:(1, x, 1):}] [{:(1, 2,3),(0,5,1),(0,3,2):}] [{:(x), (1),(-2):}]=O, then x =

If [[1,x,1]] [[1,3,2],[0,5,1],[0,2,0]][[1],[1],[x]]=0 then x is

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

If [[1,x,1]][[1,3,2],[0,5,1],[0,3,2]][[x],[1],[-2]]=0 , then x is

If [[1,x,1]][[1,2,3],[0,5,1],[0,3,2]][[x],[1],[-2]]=0 , then the value of x is

[1 x 1 ] [{:(1, 3,2),(2, 5, 1),(15, 3, 2):}] [{:(1),(2),(x):}] = 0, if x =

Solve the matrix equations: [(x,-5,-1)][(1, 0, 2) ,( 0,2 ,1),( 2, 0, 3)][(x),(4),( 1)]=0 (iv) [2x 3][(1, 2),(-3, 0)][(x),(8)]=0

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1...

    Text Solution

    |

  2. What is the order of : [xyz] [{:(a,h,g),(h,b,f),(g,f,c):}][{:(x),(y),(...

    Text Solution

    |

  3. If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

    Text Solution

    |

  4. If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O then lam...

    Text Solution

    |

  5. The matrix producet [(1),(-2),(3)][(4,5,2)][(2),(-3),(5)] equals

    Text Solution

    |

  6. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  7. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |

  8. If A=[(0,1),(1,0)] then A^(4)=

    Text Solution

    |

  9. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  10. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  11. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  12. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  13. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  14. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  15. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  16. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  17. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  18. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  19. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  20. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |