Home
Class 12
MATHS
If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)...

If `[(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O` then `lamda=`

A

`-1`

B

`-1//2`

C

`1//2`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we will follow these steps: 1. **Define the Matrices**: We have three matrices: - Matrix A: \( A = \begin{pmatrix} 1 & \lambda & 1 \end{pmatrix} \) (1x3 matrix) - Matrix B: \( B = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{pmatrix} \) (3x3 matrix) - Matrix C: \( C = \begin{pmatrix} \lambda \\ 1 \\ -2 \end{pmatrix} \) (3x1 matrix) We need to find \( \lambda \) such that \( A \cdot B \cdot C = O \) (the zero matrix). 2. **Multiply Matrices A and B**: First, we multiply matrix A by matrix B: \[ A \cdot B = \begin{pmatrix} 1 & \lambda & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{pmatrix} \] The resulting matrix will be: \[ = \begin{pmatrix} 1 \cdot 1 + \lambda \cdot 0 + 1 \cdot 0 & 1 \cdot 3 + \lambda \cdot 5 + 1 \cdot 3 & 1 \cdot 2 + \lambda \cdot 1 + 1 \cdot 2 \end{pmatrix} \] Simplifying this gives: \[ = \begin{pmatrix} 1 & 3 + 5\lambda + 3 & 2 + \lambda + 2 \end{pmatrix} = \begin{pmatrix} 1 & 5\lambda + 6 & \lambda + 4 \end{pmatrix} \] 3. **Multiply the Result by Matrix C**: Now, we multiply the result by matrix C: \[ \begin{pmatrix} 1 & 5\lambda + 6 & \lambda + 4 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ 1 \\ -2 \end{pmatrix} \] This results in: \[ = 1 \cdot \lambda + (5\lambda + 6) \cdot 1 + (\lambda + 4) \cdot (-2) \] Simplifying this gives: \[ = \lambda + 5\lambda + 6 - 2\lambda - 8 = (1 + 5 - 2)\lambda + (6 - 8) = 4\lambda - 2 \] 4. **Set the Result Equal to Zero**: We set the result equal to zero: \[ 4\lambda - 2 = 0 \] 5. **Solve for \( \lambda \)**: Solving for \( \lambda \): \[ 4\lambda = 2 \implies \lambda = \frac{2}{4} = \frac{1}{2} \] Thus, the value of \( \lambda \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If [{:(2,3),(4,1)]xx[{:(5,-2),(-3,1)]=[{:(1,-1),(17,lamda):}] then what is lamda equal to ?

If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then find lamda

If |(a^(2),b^(2),c^(2)),((a+lamda)^(2),(b+lamda)^(2),(c+lamda)^(2)),((a-lamda)^(2),(b-lamda)^(2),(c-lamda)^(2))|=k lamda|(a^(2),b^(2),c^(2)),(a,b,c),(1,1,1)| lamda!=0 then k is equal to

If |(a^(2),b^(2),c^(2)),((a+lamda)^(2),(b+lamda)^(2),(c+lamda)^(2)),((a-lamda)^(2),(b-lamda)^(2),(c-lamda)^(2))|=k lamda|(a^(2),b^(2),c^(2)),(a,b,c),(1,1,1)| lamda!=0 then k is equal to

If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360 , then the value of lamda is

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

The points (3,-2,-1),(-1,1,2),(2,3,-4) and (4,5,lamda) are coplanar when lamda= (A) 0 (B) (-146)/17 (C) 1 (D) (-17)/9

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. What is the order of : [xyz] [{:(a,h,g),(h,b,f),(g,f,c):}][{:(x),(y),(...

    Text Solution

    |

  2. If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

    Text Solution

    |

  3. If [(1,lamda,1)][(1,3,2),(0,5,1),(0,3,2)][(lamda),(1),(-2)]=O then lam...

    Text Solution

    |

  4. The matrix producet [(1),(-2),(3)][(4,5,2)][(2),(-3),(5)] equals

    Text Solution

    |

  5. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  6. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |

  7. If A=[(0,1),(1,0)] then A^(4)=

    Text Solution

    |

  8. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  9. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  10. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  11. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  12. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  13. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  14. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  15. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  16. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  17. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  18. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  19. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  20. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |