Home
Class 12
MATHS
If A=[(0,1),(1,0)] then A^(4)=...

If `A=[(0,1),(1,0)]` then `A^(4)=`

A

`[(1,0),(0,1)]`

B

`[(1,1),(0,0)]`

C

`[(0,0),(1,1)]`

D

`[(0,1),(1,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^4 \) for the matrix \( A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), we will first calculate \( A^2 \) and then use that result to find \( A^4 \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] Using matrix multiplication: \[ A^2 = \begin{pmatrix} (0 \cdot 0 + 1 \cdot 1) & (0 \cdot 1 + 1 \cdot 0) \\ (1 \cdot 0 + 0 \cdot 1) & (1 \cdot 1 + 0 \cdot 0) \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 \cdot 0 + 1 \cdot 1 = 1 \) - First row, second column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, first column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, second column: \( 1 \cdot 1 + 0 \cdot 0 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^4 \) Now, we can find \( A^4 \) by multiplying \( A^2 \) by itself: \[ A^4 = A^2 \times A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Using matrix multiplication: \[ A^4 = \begin{pmatrix} (1 \cdot 1 + 0 \cdot 0) & (1 \cdot 0 + 0 \cdot 1) \\ (0 \cdot 1 + 1 \cdot 0) & (0 \cdot 0 + 1 \cdot 1) \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \cdot 1 + 0 \cdot 0 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 1 \cdot 1 = 1 \) Thus, we have: \[ A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Answer The final result is: \[ A^4 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

If A=[[1,0,10,1,20,0,4]] then

If A is a square matrix of any order then |A-x|=0 is called the characteristic equation of matrix A and every square matrix satisfies its characteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-u)]=[(1-x,2),(1,5-x)] Characteristic equation of matri A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x0-2=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 A^-1 can be determined by multiplying both sides of this equation let A=[(1,0,0),(0,1,1),(1,-2,4)] ON the basis fo above information answer the following questions: |A^-1|= (A) 6 (B) 1/6 (C) 12 (D) none of these

If A is a square matrix of any order then |A-x|=0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-x)]=[(1-x,2),(1,5-x)] Characteristic equation of matrix A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x)(0-2)=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 A^-1 can be determined by multiplying both sides of this equation let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis for above information answer the following questions:Sum of elements of A^-1 is (A) 2 (B) -2 (C) 6 (D) none of these

If I=[[1,0],[0,1]] , then I^4=

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. The value of lamda for which the matrix product [(2,0,7),(0,1,0),(1,-2...

    Text Solution

    |

  2. If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) ...

    Text Solution

    |

  3. If A=[(0,1),(1,0)] then A^(4)=

    Text Solution

    |

  4. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  5. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  6. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  7. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  8. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  9. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  10. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  11. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  12. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  13. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  14. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  15. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  16. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  17. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  18. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  19. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  20. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |