Home
Class 12
MATHS
If A=[(a,b),(b,a)] and A^(2)=[(alpha, be...

If `A=[(a,b),(b,a)]` and `A^(2)=[(alpha, beta),(beta, alpha)]`then `(alpha, beta)` is

A

`(a^(2)+b^(2),ab)`

B

`(a^(2)+b^(2),2ab)`

C

`(a^(2)+b^(2),a^(2)-b^(2))`

D

`(2ab,a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the square of the matrix \( A \) and then compare it with the given matrix \( A^2 \). Given: \[ A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] and \[ A^2 = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] ### Step 2: Perform the matrix multiplication The multiplication of two matrices is done as follows: 1. **First row, first column**: \[ a \cdot a + b \cdot b = a^2 + b^2 \] 2. **First row, second column**: \[ a \cdot b + b \cdot a = ab + ba = 2ab \] 3. **Second row, first column**: \[ b \cdot a + a \cdot b = ba + ab = 2ab \] 4. **Second row, second column**: \[ b \cdot b + a \cdot a = b^2 + a^2 \] Putting these results together, we have: \[ A^2 = \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} \] ### Step 3: Compare with the given matrix \( A^2 \) We know that: \[ A^2 = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \] From our calculation, we can equate the corresponding elements: - \( \alpha = a^2 + b^2 \) - \( \beta = 2ab \) ### Conclusion Thus, the values of \( \alpha \) and \( \beta \) are: \[ (\alpha, \beta) = (a^2 + b^2, 2ab) \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)] then (A) alpha=a^2+b^2, beta=ab (B) alpha=a^2+b^2, beta=2ab (C) alpha=a^2+b^2, beta=a^2-b^2 (D) alpha=2ab, beta=a^2+b^2

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If tan(alpha-beta)=(sin2 beta)/(3-cos2 beta) then (a) tan alpha=2tan beta(b)tan beta=2tan alpha(c)2tan alpha=3tan beta(d)3tan alpha=2tan beta

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)*cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

If alpha,beta are roots of the equation x^(2)+2x+5=0 and bar(a)=(alpha+beta)bar(i)+alpha betabar(j),beta b=alpha betabar(i)+(alpha+beta)bar(j)+(alpha^(2)+beta^(2))bar(k) then bar(a)xxbar(b)=

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(3,-4),(1,-1)] then value of A^(n) is

    Text Solution

    |

  2. If A=[(3,1),(-1,2)] then A^(2)=

    Text Solution

    |

  3. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  4. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  5. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  6. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  7. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  8. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  9. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  10. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  11. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  12. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  13. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  14. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  15. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  16. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  17. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  18. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  19. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  20. If A is a singular matrix then Adj is

    Text Solution

    |