Home
Class 12
MATHS
If for a 2xx2 matrix A,A^(2)+I=O, where ...

If for a `2xx2` matrix `A,A^(2)+I=O`, where I is identity matrix then A equals

A

`[(1,0),(0,1)]`

B

`[(-i,0),(0,-i)]`

C

`[(1,2),(-1,1)]`

D

`[(-1,0),(0,-1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) such that \( A^2 + I = O \), where \( I \) is the identity matrix and \( O \) is the zero matrix. ### Step-by-step Solution: 1. **Understanding the Equation**: We start with the equation: \[ A^2 + I = O \] This can be rewritten as: \[ A^2 = -I \] This means that the square of the matrix \( A \) is equal to the negative of the identity matrix. 2. **Identifying the Identity Matrix**: For a \( 2 \times 2 \) matrix, the identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 3. **Finding Possible Matrices**: We need to check various \( 2 \times 2 \) matrices to see if their square equals \( -I \). 4. **Option 1: \( A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)**: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] \[ A^2 + I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \neq O \] **Conclusion**: Option 1 is incorrect. 5. **Option 2: \( A = -I \)**: \[ A = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] \[ A^2 + I = I + I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \neq O \] **Conclusion**: Option 2 is incorrect. 6. **Option 3: \( A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \)**: \[ A^2 = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + (-1) \cdot 2 & 1 \cdot (-1) + (-1) \cdot 1 \\ 2 \cdot 1 + 1 \cdot 2 & 2 \cdot (-1) + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 4 & -1 \end{pmatrix} \] \[ A^2 + I = \begin{pmatrix} -1 & -2 \\ 4 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 4 & 0 \end{pmatrix} \neq O \] **Conclusion**: Option 3 is incorrect. 7. **Option 4: \( A = \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \)**: \[ A^2 = \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \] \[ A^2 + I = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \neq O \] **Conclusion**: Option 4 is incorrect. ### Final Conclusion: None of the options provided satisfy the equation \( A^2 + I = O \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

(C) equal to In1f for a matrix A, A? +| =0 where I is the identity matrix, then A equale1 0(A) o 1© @ :?-1 01(C)1 1c1 27[o -1

I^(2) is equal to, where I is identitity matrix.

The matrix A^2 + 4 A-5I, where I is identity matrix and A = [[1,2],[4,-3]]equals : (A) 32[[1,1],[1,0]] (B) 4[[2,1],[2,0]] (C) 4[[0,-1],[2,2]] (D) 32[[2,1],[2,0]]

If A is skew symmetric matrix, then I - A is (where I is identity matrix of the order equal to that of A)

Matrix A such that A^(2)=2A-I, where I is the identity matrix,the for n>=2.A^(n) is equal to 2^(n-1)A-(n-1)l b.2^(n-1)A-I c.nA-(n-1)l d.nA-I

Let A be a square matrix of order 2 such that A^(2)-4A+4I=0 , where I is an identity matrix of order 2. If B=A^(5)+4A^(4)+6A^(3)+4A^(2)+A-162I , then det(B) is equal to _________

If B, C are square matrices of same order such that C^(2)=BC-CB and B^(2)=-I , where I is an identity matrix, then the inverse of matrix (C-B) is

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  2. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  3. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  4. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  5. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  6. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  7. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  8. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  9. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  10. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  11. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  12. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  13. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  14. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  15. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  16. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  17. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  18. If A is a singular matrix then Adj is

    Text Solution

    |

  19. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  20. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |