Home
Class 12
MATHS
If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,...

If `A+B=[(1,0),(1,1)]`and `A-2B=[(-1,1),(0,-1)]` then A is equal to

A

`[(1,1),(2,1)]`

B

`[(2//3,1//3),(1//3,2//3)]`

C

`[(1//3,1//3),(2//3,1//3)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) given the equations \( A + B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) and \( A - 2B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \), we can follow these steps: ### Step 1: Set up the equations We have two equations: 1. \( A + B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \) (Equation 2) ### Step 2: Multiply Equation 1 by 2 To eliminate \( B \), we can manipulate the equations. First, we multiply Equation 1 by 2: \[ 2(A + B) = 2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} \] This gives us: \[ 2A + 2B = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} \quad \text{(Equation 3)} \] ### Step 3: Add Equation 2 to Equation 3 Now we add Equation 2 to Equation 3: \[ (2A + 2B) + (A - 2B) = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \] This simplifies to: \[ 2A + 2B + A - 2B = 3A = \begin{pmatrix} 2 - 1 & 0 + 1 \\ 2 + 0 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \] ### Step 4: Solve for \( A \) Now, we can isolate \( A \): \[ 3A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \] To find \( A \), we divide both sides by 3: \[ A = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} \] ### Final Answer Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

If [(2,1),(3,2)] A[(-3,2),(5,-3)]=[(1,0),(0,1)] then a is equal to (A) [(0,1),(1,1)] (B) [(1,0),(1,1)] (C) [(1,1),(1,0)] (D) [(1,1),(0,1)]

If A+2B=[(2,-4),(1,6)],A prime+B prime=[(1,2),(0,-1)], then A is equal to

If A=[(0,1),(1,0)] and B=[(1,0),(0,-1)], prove that :

If A = [(2,0,1),(-1,1,5)] and B = [(-1,1,0),(0,1,-2)] then find AB'

If A=[(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If A =[{:(1,2),(1,1):}]and B = [{:(0,-1),(1,2):}] , then what is B^(-1)A^(-1) equal to ?

If A =[{:(1,-1),(1,2):}]and B = [{:(1,0),(1,1):}] , then what is B^(-1)A^(-1) equal to ?

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(alpha, 2),(2,alpha)] and |A^(3)|=125 then alpha is

    Text Solution

    |

  2. If for a 2xx2 matrix A,A^(2)+I=O, where I is identity matrix then A eq...

    Text Solution

    |

  3. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  4. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  5. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  6. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  7. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  8. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  9. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  10. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  11. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  12. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  13. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  14. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  15. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  16. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  17. If A is a singular matrix then Adj is

    Text Solution

    |

  18. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  19. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  20. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |