Home
Class 12
MATHS
If the matrix [(1,3,lamda+2),(2,4,8),(3,...

If the matrix `[(1,3,lamda+2),(2,4,8),(3,5,10)]` is singular then `lamda=`

A

`-2`

B

4

C

2

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \(\lambda\) for which the matrix \[ A = \begin{pmatrix} 1 & 3 & \lambda + 2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{pmatrix} \] is singular, we need to calculate the determinant of the matrix and set it equal to zero. ### Step-by-Step Solution: 1. **Write the determinant of the matrix**: The determinant of a \(3 \times 3\) matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is calculated as: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \(A\), we have: - \(a = 1\), \(b = 3\), \(c = \lambda + 2\) - \(d = 2\), \(e = 4\), \(f = 8\) - \(g = 3\), \(h = 5\), \(i = 10\) Thus, the determinant can be expressed as: \[ \text{det}(A) = 1(4 \cdot 10 - 8 \cdot 5) - 3(2 \cdot 10 - 8 \cdot 3) + (\lambda + 2)(2 \cdot 5 - 4 \cdot 3) \] 2. **Calculate each part of the determinant**: - Calculate \(4 \cdot 10 - 8 \cdot 5\): \[ 40 - 40 = 0 \] - Calculate \(2 \cdot 10 - 8 \cdot 3\): \[ 20 - 24 = -4 \] - Calculate \(2 \cdot 5 - 4 \cdot 3\): \[ 10 - 12 = -2 \] 3. **Substitute back into the determinant formula**: Now substituting these values back, we get: \[ \text{det}(A) = 1(0) - 3(-4) + (\lambda + 2)(-2) \] Simplifying this gives: \[ \text{det}(A) = 0 + 12 - 2(\lambda + 2) \] 4. **Set the determinant to zero**: For the matrix to be singular, we set the determinant equal to zero: \[ 12 - 2(\lambda + 2) = 0 \] 5. **Solve for \(\lambda\)**: Expanding and solving the equation: \[ 12 - 2\lambda - 4 = 0 \] \[ 8 - 2\lambda = 0 \] \[ 2\lambda = 8 \] \[ \lambda = 4 \] Thus, the value of \(\lambda\) for which the matrix is singular is \[ \lambda = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then find lamda

Assertion (A) : If the matrix A=[{:(1,3,lambda+2),(2,4,8),(3,5,10):}] is singular , then lambda=4 . Reason (R ) : If A is a singular matrix, then |A|=0

The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

In the matrix A=[(3-2x,x+1),(2,4)] is singular then X=?

The matrix [[lamda,1,0],[0,2,3],[0,0,lamda]] is invertible.

For what value of k ,the matrix [[2-k,3],[-5,1]] is singular.

If [{:(1,-3,2),(2,-8,5),(4,2, lamda):}] is not an invertible matrix, then what is the value of lamda

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A+B=[(1,0),(1,1)]and A-2B=[(-1,1),(0,-1)] then A is equal to

    Text Solution

    |

  2. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  3. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  4. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  5. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  6. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  7. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  8. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  9. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  10. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  11. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  12. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  13. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  14. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  15. If A is a singular matrix then Adj is

    Text Solution

    |

  16. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  17. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  18. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  19. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  20. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |