Home
Class 12
MATHS
If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^...

If `A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))]` then AB=

A

A

B

B

C

It is not necessary that either A=O or B=O

D

O

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the matrices \( A \) and \( B \), we will follow the matrix multiplication rules step by step. Given: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}, \quad B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \] ### Step 1: Calculate the first row of \( AB \) To find the first row of the product \( AB \), we multiply the first row of \( A \) by each column of \( B \). 1. **First Column of \( B \)**: \[ (0 \cdot a^2) + (c \cdot ab) + (-b \cdot ac) = 0 + abc - abc = 0 \] 2. **Second Column of \( B \)**: \[ (0 \cdot ab) + (c \cdot b^2) + (-b \cdot bc) = 0 + cb^2 - b^2c = 0 \] 3. **Third Column of \( B \)**: \[ (0 \cdot ac) + (c \cdot bc) + (-b \cdot c^2) = 0 + c^2b - bc^2 = 0 \] Thus, the first row of \( AB \) is: \[ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] ### Step 2: Calculate the second row of \( AB \) Now we calculate the second row of \( AB \) by multiplying the second row of \( A \) by each column of \( B \). 1. **First Column of \( B \)**: \[ (-c \cdot a^2) + (0 \cdot ab) + (a \cdot ac) = -ca^2 + 0 + a^2c = 0 \] 2. **Second Column of \( B \)**: \[ (-c \cdot ab) + (0 \cdot b^2) + (a \cdot bc) = -cab + 0 + abc = 0 \] 3. **Third Column of \( B \)**: \[ (-c \cdot ac) + (0 \cdot bc) + (a \cdot c^2) = -c^2a + 0 + ac^2 = 0 \] Thus, the second row of \( AB \) is: \[ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] ### Step 3: Calculate the third row of \( AB \) Finally, we calculate the third row of \( AB \) by multiplying the third row of \( A \) by each column of \( B \). 1. **First Column of \( B \)**: \[ (b \cdot a^2) + (-a \cdot ab) + (0 \cdot ac) = ba^2 - a^2b + 0 = 0 \] 2. **Second Column of \( B \)**: \[ (b \cdot ab) + (-a \cdot b^2) + (0 \cdot bc) = ab^2 - ab^2 + 0 = 0 \] 3. **Third Column of \( B \)**: \[ (b \cdot ac) + (-a \cdot bc) + (0 \cdot c^2) = abc - abc + 0 = 0 \] Thus, the third row of \( AB \) is: \[ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] ### Final Result Combining all the rows, we find that: \[ AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] This is the zero matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=

Find the product of the following two matrices [(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)] .

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Find the product of the followng two matrices: [[0,c,-b],[-c,0,a],[b,-a,0]] and [[ a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] "and B"= [(0,c,-b),(-c,0,a),(b,-a,0)] then the product AB is equal to

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(1,2,-1),(3,4,7),(5,1,6)] then the value of X where A+X is a uni...

    Text Solution

    |

  2. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  3. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  4. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  5. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  6. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  7. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  8. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  9. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  10. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  11. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  12. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  13. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  14. If A is a singular matrix then Adj is

    Text Solution

    |

  15. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  16. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  17. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  18. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  19. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  20. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |