Home
Class 12
MATHS
If A=[(i,0),(0,i)] thenA^(2)=...

If `A=[(i,0),(0,i)]` then`A^(2)`=

A

`[(1,0),(0,-1)]`

B

`[(-1,0),(0,-1)]`

C

`[(1,0),(0,1)]`

D

`[(-1,0),(0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \( A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \), we will follow the matrix multiplication process step by step. ### Step 1: Write down the matrix \( A \) We have: \[ A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \] ### Step 2: Set up the multiplication for \( A^2 \) We need to calculate \( A^2 \), which is \( A \times A \): \[ A^2 = A \times A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \times \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \] ### Step 3: Perform the multiplication To multiply two matrices, we take the dot product of the rows of the first matrix with the columns of the second matrix. **Calculating the first row and first column:** \[ \text{Element (1,1)}: i \cdot i + 0 \cdot 0 = i^2 + 0 = i^2 \] **Calculating the first row and second column:** \[ \text{Element (1,2)}: i \cdot 0 + 0 \cdot i = 0 + 0 = 0 \] **Calculating the second row and first column:** \[ \text{Element (2,1)}: 0 \cdot i + i \cdot 0 = 0 + 0 = 0 \] **Calculating the second row and second column:** \[ \text{Element (2,2)}: 0 \cdot 0 + i \cdot i = 0 + i^2 = i^2 \] ### Step 4: Combine the results into the resulting matrix Putting all the calculated elements together, we get: \[ A^2 = \begin{pmatrix} i^2 & 0 \\ 0 & i^2 \end{pmatrix} \] ### Step 5: Substitute \( i^2 \) with its value Since \( i^2 = -1 \), we substitute: \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] ### Final Result Thus, the final result for \( A^2 \) is: \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,0),(0,2):}] then A^(2) - 3I =……

If A = [(-i,0),(0,i)] then A ' A is equal to

If A = [{:(i, 0),(0,i):}] and B = [{:(0,-i),(-i,0):}] , then (A + B)(A - B) equals

If {:A=[(i,0),(0,i)]:},n in N" then " A^(4n) equal

If A=[[i, 0], [0, (i)/(2)]] , then A^(-1)=

1.If A=[[i,0],[0,-i]] then show that A^(2)=-I

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

If A={:[(1+i,-i),(i,1+i)]:}," where "i=sqrt(-1)," and "A^(2)-2A+I=0," then ":A^(-1)=

If A[{:(i,0),(0,-i)]B=[{:(0,-1),(1,0)] and C =[{:(0,i),(i,0):}] where i= sqrt(-1) . Then which one of the following is correct ?

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then lamda=

    Text Solution

    |

  2. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  3. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  4. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  5. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  6. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  7. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  8. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  9. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  10. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  11. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  12. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  13. If A is a singular matrix then Adj is

    Text Solution

    |

  14. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  15. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  16. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  17. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  18. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  19. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |

  20. Let A be an invertible matrix, then which of the following is not true...

    Text Solution

    |