Home
Class 12
MATHS
If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] w...

If `A=[(alpha,0),(1,1)],B=[(1,0),(5,1)]` whenever `A^(2)=B` then the value of `alpha`is

A

1

B

`-1`

C

4

D

no real value of `alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that \( A^2 = B \), where \[ A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}. \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}. \] Using matrix multiplication, we calculate each element: - The element at the first row, first column: \[ \alpha \cdot \alpha + 0 \cdot 1 = \alpha^2. \] - The element at the first row, second column: \[ \alpha \cdot 0 + 0 \cdot 1 = 0. \] - The element at the second row, first column: \[ 1 \cdot \alpha + 1 \cdot 1 = \alpha + 1. \] - The element at the second row, second column: \[ 1 \cdot 0 + 1 \cdot 1 = 1. \] Thus, we have: \[ A^2 = \begin{pmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{pmatrix}. \] ### Step 2: Set \( A^2 \) equal to \( B \) Now, we set \( A^2 \) equal to \( B \): \[ \begin{pmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}. \] ### Step 3: Create equations from the equality of matrices From the equality of the matrices, we can derive the following equations: 1. \( \alpha^2 = 1 \) 2. \( 0 = 0 \) (which is always true) 3. \( \alpha + 1 = 5 \) 4. \( 1 = 1 \) (which is always true) ### Step 4: Solve the equations **From the first equation:** \[ \alpha^2 = 1 \implies \alpha = 1 \text{ or } \alpha = -1. \] **From the third equation:** \[ \alpha + 1 = 5 \implies \alpha = 4. \] ### Step 5: Analyze the solutions We have two potential solutions from the first equation (\( \alpha = 1 \) or \( \alpha = -1 \)) and one from the third equation (\( \alpha = 4 \)). However, we need to check if these values satisfy both equations: - For \( \alpha = 1 \): - \( \alpha + 1 = 2 \neq 5 \) (not valid) - For \( \alpha = -1 \): - \( \alpha + 1 = 0 \neq 5 \) (not valid) - For \( \alpha = 4 \): - \( \alpha^2 = 16 \neq 1 \) (not valid) ### Conclusion None of the values of \( \alpha \) satisfy both equations simultaneously. Therefore, there is no real value of \( \alpha \) that satisfies \( A^2 = B \). The final answer is that there is **no real value of \( \alpha \)**.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B , then the value of a + b + c is

If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:} , then te value of alpha for which A^2=B , is

if A=[[alpha,01,1]],B=[[1,03,1]] and A^(2)=B then find the value of alpha it possible

If A=[{:(alpha,0),(1,1)] and B=[{:(1,0),(2,1):}] such that A^(2)=B then what is the value of alpha ?

If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B , then what is the value of alpha ?

If A = [{:(alpha, 0), (1, 1):}] " and " B = [{:(1, 0), (5, 1):}] then value of alpha for which A^(2) = B , is

If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value of alpha is (a) +-1 (b) +-2 (c) +-3 (d) +-5

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

If A=[[alpha,01,1]] and B=[[1,05,1]], find the values of alpha for which A^(2),=B

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,b...

    Text Solution

    |

  2. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  3. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  4. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  5. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  6. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  7. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  8. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  9. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  10. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  11. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  12. If A is a singular matrix then Adj is

    Text Solution

    |

  13. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  14. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  15. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  16. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  17. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  18. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |

  19. Let A be an invertible matrix, then which of the following is not true...

    Text Solution

    |

  20. If A=[(ab,b^(2)),(-a^(2),-ab)] then A is

    Text Solution

    |