Home
Class 12
MATHS
If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] wher...

If `A=[(1,2),(3,4)],B=[(a, 0),(0,b)]` where `a,b, in N` If AB=BA then three exists

A

only one B

B

infinitely many B's

C

more than one but infinite B's

D

not N exists

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the condition under which the matrices \( A \) and \( B \) commute, i.e., \( AB = BA \). Given: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \] where \( a, b \in \mathbb{N} \). ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \] Calculating each element: - The element at (1,1) is \( 1 \cdot a + 2 \cdot 0 = a \). - The element at (1,2) is \( 1 \cdot 0 + 2 \cdot b = 2b \). - The element at (2,1) is \( 3 \cdot a + 4 \cdot 0 = 3a \). - The element at (2,2) is \( 3 \cdot 0 + 4 \cdot b = 4b \). Thus, we have: \[ AB = \begin{pmatrix} a & 2b \\ 3a & 4b \end{pmatrix} \] ### Step 2: Calculate \( BA \) Now we calculate \( BA \): \[ BA = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \] Calculating each element: - The element at (1,1) is \( a \cdot 1 + 0 \cdot 3 = a \). - The element at (1,2) is \( a \cdot 2 + 0 \cdot 4 = 2a \). - The element at (2,1) is \( 0 \cdot 1 + b \cdot 3 = 3b \). - The element at (2,2) is \( 0 \cdot 2 + b \cdot 4 = 4b \). Thus, we have: \[ BA = \begin{pmatrix} a & 2a \\ 3b & 4b \end{pmatrix} \] ### Step 3: Set \( AB = BA \) Now we set the two results equal to each other: \[ \begin{pmatrix} a & 2b \\ 3a & 4b \end{pmatrix} = \begin{pmatrix} a & 2a \\ 3b & 4b \end{pmatrix} \] This gives us the following equations: 1. \( a = a \) (always true) 2. \( 2b = 2a \) 3. \( 3a = 3b \) 4. \( 4b = 4b \) (always true) From the second equation, we can simplify: \[ b = a \] From the third equation, we also find: \[ a = b \] ### Conclusion Thus, the condition for \( AB = BA \) is that \( a = b \). Since both \( a \) and \( b \) are natural numbers, there exists an infinite number of pairs \( (a, b) \) such that \( a = b \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let {:A=[(1,2),(3,4)]and B=[(a,0),(0,b)]:},a,b in N Then,

Let A={:((1,2),(3,4):}) and B={:((a,0),(0,b)):} , where a,b in N , then

Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N . The number of matrices B such that AB=BA , is equal to

Let A={:[(1,2),(3,4)]:},B={:[(-1,-2),(-4,-3)]:} , find AB and BA.

If A=[(1,0),(0,3)] and B=[(2,0),(0,1)] then show AB =BA =[(2,0),(0,3)]

Let A=([1,23,4]) and B=([a,00,b]),a,b in N) Then,(a) there cannot exist any B such that AB=BA

If A=[{:(2,-1),(3,4),(1,5):}]" and "B=[{:(-1,3),(2,1):}] , find AB. Does BA exist?

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

If A=[{:(5,4),(2,3):}]" and "B=[{:(3,5,1),(6,8,4):}] , find AB and BA whichever exists.

if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,d):}], then show that (AB)'=B'A'

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(i,0),(0,i)] thenA^(2)=

    Text Solution

    |

  2. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  3. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  4. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  5. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  6. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  7. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  8. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  9. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  10. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  11. If A is a singular matrix then Adj is

    Text Solution

    |

  12. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  13. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  14. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  15. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  16. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  17. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |

  18. Let A be an invertible matrix, then which of the following is not true...

    Text Solution

    |

  19. If A=[(ab,b^(2)),(-a^(2),-ab)] then A is

    Text Solution

    |

  20. If A=[(3,0,0),(0,2,0),(0,0,1)] then A is

    Text Solution

    |