Home
Class 12
MATHS
If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(...

If `A=[(1,0,0),(0,1,0),(a,b,-1)]` then `A^(2)` is eqal to

A

`A`

B

`-A`

C

Null matrix

D

I

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}, \] we will perform matrix multiplication \( A \times A \). ### Step 1: Write down the multiplication We need to calculate \( A^2 = A \times A \): \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}. \] ### Step 2: Calculate the elements of the resulting matrix Now, we will calculate each element of the resulting matrix \( A^2 \): 1. **First row, first column**: \[ 1 \cdot 1 + 0 \cdot 0 + 0 \cdot a = 1. \] 2. **First row, second column**: \[ 1 \cdot 0 + 0 \cdot 1 + 0 \cdot b = 0. \] 3. **First row, third column**: \[ 1 \cdot 0 + 0 \cdot 0 + 0 \cdot -1 = 0. \] 4. **Second row, first column**: \[ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot a = 0. \] 5. **Second row, second column**: \[ 0 \cdot 0 + 1 \cdot 1 + 0 \cdot b = 1. \] 6. **Second row, third column**: \[ 0 \cdot 0 + 1 \cdot 0 + 0 \cdot -1 = 0. \] 7. **Third row, first column**: \[ a \cdot 1 + b \cdot 0 + -1 \cdot a = a - a = 0. \] 8. **Third row, second column**: \[ a \cdot 0 + b \cdot 1 + -1 \cdot b = b - b = 0. \] 9. **Third row, third column**: \[ a \cdot 0 + b \cdot 0 + -1 \cdot -1 = 1. \] ### Step 3: Combine results into the resulting matrix Putting all these results together, we get: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \] ### Conclusion Thus, \( A^2 \) is the identity matrix \( I \): \[ A^2 = I. \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2 is equal to (A) null matrix (B) unit matrix (C) -A (D) A

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A^-1 = [(1,-1,0),(0,-2,1),(0,0,1)] then (A) A is non-singular (B) A is skew symmetric (C) |A|=2 (D) AdjA= [(1/2,- 1/2,0),(0,-1,1/2),(0,0,- 1/2)]

If A=[(a,0),(0,(1)/(b))] , then A^(-1) =

If A=[[1,0,0],[0,1,0],[a,b,-1]] and A=A^(-1) then a+b=?

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(alpha,0),(1,1)],B=[(1,0),(5,1)] whenever A^(2)=B then the value...

    Text Solution

    |

  2. If A=[(1,2),(3,4)],B=[(a, 0),(0,b)] where a,b, in N If AB=BA then thr...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^(2) is eqal to

    Text Solution

    |

  4. If A=[(1,3),(3,4)] and A^(2)-lamdaA-5I=O then lamda is equal to

    Text Solution

    |

  5. For any 2xx2 matrix A if A (Adj. A) =[(10,0),(0,10)] then |A| equals

    Text Solution

    |

  6. Assuming that the sums and products given below are defined which of t...

    Text Solution

    |

  7. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  8. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  9. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  10. If A is a singular matrix then Adj is

    Text Solution

    |

  11. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  12. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  13. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  14. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  15. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  16. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |

  17. Let A be an invertible matrix, then which of the following is not true...

    Text Solution

    |

  18. If A=[(ab,b^(2)),(-a^(2),-ab)] then A is

    Text Solution

    |

  19. If A=[(3,0,0),(0,2,0),(0,0,1)] then A is

    Text Solution

    |

  20. Let A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A is

    Text Solution

    |