Home
Class 12
MATHS
If A=[(cos theta, sin theta),(-sin theta...

If `A=[(cos theta, sin theta),(-sin theta, cos theta)]` and `A(adjA)=lamdaI` then `lamda` is equal to

A

1

B

2

C

3

D

`sin theta cos theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) given that \(A \cdot \text{adj}(A) = \lambda I\), where \(A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}\). ### Step 1: Find the adjoint of matrix \(A\) The adjoint of a matrix \(A\) is defined as the transpose of its cofactor matrix. For a \(2 \times 2\) matrix, the cofactor matrix can be computed as follows: 1. The cofactor \(C_{11}\) is obtained by removing the first row and first column from \(A\): \[ C_{11} = \cos \theta \] 2. The cofactor \(C_{12}\) is obtained by removing the first row and second column from \(A\): \[ C_{12} = -(-\sin \theta) = \sin \theta \] 3. The cofactor \(C_{21}\) is obtained by removing the second row and first column from \(A\): \[ C_{21} = -\sin \theta \] 4. The cofactor \(C_{22}\) is obtained by removing the second row and second column from \(A\): \[ C_{22} = \cos \theta \] Thus, the cofactor matrix is: \[ C = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Now, the adjoint of \(A\) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] ### Step 2: Calculate \(A \cdot \text{adj}(A)\) Now we need to multiply \(A\) and \(\text{adj}(A)\): \[ A \cdot \text{adj}(A) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] Calculating the product: 1. First row, first column: \[ \cos \theta \cdot \cos \theta + \sin \theta \cdot \sin \theta = \cos^2 \theta + \sin^2 \theta = 1 \] 2. First row, second column: \[ \cos \theta \cdot (-\sin \theta) + \sin \theta \cdot \cos \theta = -\cos \theta \sin \theta + \sin \theta \cos \theta = 0 \] 3. Second row, first column: \[ -\sin \theta \cdot \cos \theta + \cos \theta \cdot \sin \theta = -\sin \theta \cos \theta + \cos \theta \sin \theta = 0 \] 4. Second row, second column: \[ -\sin \theta \cdot (-\sin \theta) + \cos \theta \cdot \cos \theta = \sin^2 \theta + \cos^2 \theta = 1 \] Putting it all together, we get: \[ A \cdot \text{adj}(A) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 3: Relate to \(\lambda I\) From the equation \(A \cdot \text{adj}(A) = \lambda I\), we have: \[ I = \lambda I \] This implies: \[ \lambda = 1 \] ### Final Answer Thus, the value of \(\lambda\) is: \[ \lambda = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

(i) |(cos theta,-sin theta),(sin theta,cos theta)|

cos theta/(1+sin theta)=(1-sin theta)/cos theta

If A=[(-cos theta, -sin theta),(-cos theta, sin theta)] and A(adjA)=lamda[(1,0),(0,1)] then lamda is equal to

If A=[[cos theta,sin theta-sin theta,cos theta]] and A(adjA)=lambda l then the value of lambda is and A(adjA)=lambda l

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

A = [(cos theta,-sin theta),(-sin theta,-cos theta)] then find A^(-1) .

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

(sin 3theta)/(sin theta)-(cos 3theta)/(cos theta)=

cos theta+sin theta=cos2 theta+sin2 theta

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(alpha, 0, 0),(0,alpha, 0),(0,0,alpha)] then the valueof (i) |...

    Text Solution

    |

  2. For a 3xx3 matrix A if det A=4, then det (Adj. A) equals

    Text Solution

    |

  3. If A=[(cos theta, sin theta),(-sin theta, cos theta)] and A(adjA)=lamd...

    Text Solution

    |

  4. If A is a singular matrix then Adj is

    Text Solution

    |

  5. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  6. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  7. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  8. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  9. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  10. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |

  11. Let A be an invertible matrix, then which of the following is not true...

    Text Solution

    |

  12. If A=[(ab,b^(2)),(-a^(2),-ab)] then A is

    Text Solution

    |

  13. If A=[(3,0,0),(0,2,0),(0,0,1)] then A is

    Text Solution

    |

  14. Let A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A is

    Text Solution

    |

  15. The matrix [(0,5,-7),(-5,0,11),(7,-11,0)] is

    Text Solution

    |

  16. If A and B symmetric matrices of the same order then AB-BA is a matrix...

    Text Solution

    |

  17. If A=[(0,-1,-4),(1,0,-7),(4,7,0)] then A^(T)=

    Text Solution

    |

  18. If A=[(a,p),(b,q),(c,r)](3xx2) then Det ("AA"^(T)) is equal to

    Text Solution

    |

  19. If A=[{:(cos alpha, sin alpha),(-sin alpha, cos alpha):}], then what i...

    Text Solution

    |

  20. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] the adj. A=

    Text Solution

    |