Home
Class 12
MATHS
The inverse of the matrix A=[(0,1,0),(1,...

The inverse of the matrix `A=[(0,1,0),(1,0,0),(0,0,1)]` is equal to

A

A

B

A'

C

`[(0,1,0),(0,1,0),(0,0,1)]`

D

`[(1,0,0),(1,0,0),(0,1,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 0 \cdot (0 \cdot 1 - 0 \cdot 0) - 1 \cdot (1 \cdot 1 - 0 \cdot 0) + 0 \cdot (1 \cdot 0 - 0 \cdot 0) \] \[ = 0 - 1 \cdot 1 + 0 = -1 \] ### Step 2: Calculate the Adjoint of Matrix \( A \) The adjoint of a matrix is the transpose of the cofactor matrix. We will find the cofactor matrix first. The cofactor matrix \( C \) is calculated by taking the determinant of the \( 2 \times 2 \) submatrices formed by removing the row and column of each element. 1. For \( C_{11} \): Remove the first row and first column, we get \( \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \), so \( C_{11} = 0 \). 2. For \( C_{12} \): Remove the first row and second column, we get \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), so \( C_{12} = -1 \). 3. For \( C_{13} \): Remove the first row and third column, we get \( \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \), so \( C_{13} = 0 \). 4. For \( C_{21} \): Remove the second row and first column, we get \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), so \( C_{21} = -1 \). 5. For \( C_{22} \): Remove the second row and second column, we get \( \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \), so \( C_{22} = 0 \). 6. For \( C_{23} \): Remove the second row and third column, we get \( \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), so \( C_{23} = 0 \). 7. For \( C_{31} \): Remove the third row and first column, we get \( \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \), so \( C_{31} = 0 \). 8. For \( C_{32} \): Remove the third row and second column, we get \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), so \( C_{32} = 1 \). 9. For \( C_{33} \): Remove the third row and third column, we get \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), so \( C_{33} = 0 \). Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] Now, we take the transpose of the cofactor matrix to get the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix \( A \) The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-1} \cdot \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] \[ = -1 \cdot \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] \[ = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are non-zero real numbers, then the inverse of the matrix A=[{:(a,0,0),(0,b,0),(0,0,c):}] is equal to

If a,b,c are non-zero real numbers, then the inverse of the matrix A=[{:(a,0,0),(0,b,0),(0,0,c):}] is equal to :

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

The inverse of matrix A=[[0,1,01,0,00,0,1]] is

The matrix [(1,0,0),(0,2,0),(0,0,4)] is a

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A is a singular matrix then Adj is

    Text Solution

    |

  2. Let A be a 2xx2 matrix. Statement 1: adj(adjA)=A Statement 2: |adjA...

    Text Solution

    |

  3. The inverse of the matrix A=[(0,1,0),(1,0,0),(0,0,1)] is equal to

    Text Solution

    |

  4. Let A [(0,0,-1),(0,-1,0),(-1,0,0)]. Then the only correct statement A ...

    Text Solution

    |

  5. The number of 3xx3 non singular matrices, with four entries is 1 and a...

    Text Solution

    |

  6. If I(3) is the identity matrix of order 3 order (I(3))^(-1) is equal ...

    Text Solution

    |

  7. If ((1,2,3))A=((4,5)), what is the order of matrix A?

    Text Solution

    |

  8. Let A be an invertible matrix, then which of the following is not true...

    Text Solution

    |

  9. If A=[(ab,b^(2)),(-a^(2),-ab)] then A is

    Text Solution

    |

  10. If A=[(3,0,0),(0,2,0),(0,0,1)] then A is

    Text Solution

    |

  11. Let A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A is

    Text Solution

    |

  12. The matrix [(0,5,-7),(-5,0,11),(7,-11,0)] is

    Text Solution

    |

  13. If A and B symmetric matrices of the same order then AB-BA is a matrix...

    Text Solution

    |

  14. If A=[(0,-1,-4),(1,0,-7),(4,7,0)] then A^(T)=

    Text Solution

    |

  15. If A=[(a,p),(b,q),(c,r)](3xx2) then Det ("AA"^(T)) is equal to

    Text Solution

    |

  16. If A=[{:(cos alpha, sin alpha),(-sin alpha, cos alpha):}], then what i...

    Text Solution

    |

  17. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] the adj. A=

    Text Solution

    |

  18. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  19. From the matrix equation AB=AC we can conclude B=C provided the matrix...

    Text Solution

    |

  20. If A and B are square matrices of order 3 such that |A|=-1,|B|=3, the ...

    Text Solution

    |