Home
Class 12
MATHS
Let A=[(1,1,3),(5,2,6),(-2,-1,-3)] then ...

Let `A=[(1,1,3),(5,2,6),(-2,-1,-3)]` then A is

A

Nilpotent

B

Idempotent

C

Scalar

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the matrix \( A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \), we need to find \( A^2 \) and \( A^3 \) and check if \( A^2 = 0 \) or \( A^3 = 0 \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row, first column: \[ 1 \cdot 1 + 1 \cdot 5 + 3 \cdot (-2) = 1 + 5 - 6 = 0 \] - First row, second column: \[ 1 \cdot 1 + 1 \cdot 2 + 3 \cdot (-1) = 1 + 2 - 3 = 0 \] - First row, third column: \[ 1 \cdot 3 + 1 \cdot 6 + 3 \cdot (-3) = 3 + 6 - 9 = 0 \] - Second row, first column: \[ 5 \cdot 1 + 2 \cdot 5 + 6 \cdot (-2) = 5 + 10 - 12 = 3 \] - Second row, second column: \[ 5 \cdot 1 + 2 \cdot 2 + 6 \cdot (-1) = 5 + 4 - 6 = 3 \] - Second row, third column: \[ 5 \cdot 3 + 2 \cdot 6 + 6 \cdot (-3) = 15 + 12 - 18 = 9 \] - Third row, first column: \[ -2 \cdot 1 + (-1) \cdot 5 + (-3) \cdot (-2) = -2 - 5 + 6 = -1 \] - Third row, second column: \[ -2 \cdot 1 + (-1) \cdot 2 + (-3) \cdot (-1) = -2 - 2 + 3 = -1 \] - Third row, third column: \[ -2 \cdot 3 + (-1) \cdot 6 + (-3) \cdot (-3) = -6 - 6 + 9 = -3 \] Thus, we have: \[ A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 = A^2 \times A \): \[ A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] Calculating each element of \( A^3 \): - First row, first column: \[ 0 \cdot 1 + 0 \cdot 5 + 0 \cdot (-2) = 0 \] - First row, second column: \[ 0 \cdot 1 + 0 \cdot 2 + 0 \cdot (-1) = 0 \] - First row, third column: \[ 0 \cdot 3 + 0 \cdot 6 + 0 \cdot (-3) = 0 \] - Second row, first column: \[ 3 \cdot 1 + 3 \cdot 5 + 9 \cdot (-2) = 3 + 15 - 18 = 0 \] - Second row, second column: \[ 3 \cdot 1 + 3 \cdot 2 + 9 \cdot (-1) = 3 + 6 - 9 = 0 \] - Second row, third column: \[ 3 \cdot 3 + 3 \cdot 6 + 9 \cdot (-3) = 9 + 18 - 27 = 0 \] - Third row, first column: \[ -1 \cdot 1 + (-1) \cdot 5 + (-3) \cdot (-2) = -1 - 5 + 6 = 0 \] - Third row, second column: \[ -1 \cdot 1 + (-1) \cdot 2 + (-3) \cdot (-1) = -1 - 2 + 3 = 0 \] - Third row, third column: \[ -1 \cdot 3 + (-1) \cdot 6 + (-3) \cdot (-3) = -3 - 6 + 9 = 0 \] Thus, we have: \[ A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Conclusion Since \( A^3 = 0 \), matrix \( A \) is nilpotent. ### Final Answer **A is nilpotent.**
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] then A is

Let A = ((1,1,3),(5,2,6),(-2,-1,-3)) and let n be the smallest value of n in N such that A^(n) = O_(3) then det (I_(3)+A+A^(2)+ cdots+ A^(n-1)) is equal to _____ .

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] .Then |A| is

show that [(1,1,3),(5,2,6),(-2,-1,-3)]=A is nipotent matrix of order 3.

Show that the matrix [{:( 1,1,3),( 5,2,6),( -2,-1,-3):}] is nilpotent matrix of index 3.

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] , then find A^(3)

Let A=[[1, 1,3], [5, 2,6],[-2,-1,-3]] . Find t r(A^(2012))

Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

A=[[1,1,3],[5,2,6],[-2,-1,-3]] is a nilpotent matrix of index K .Then K=

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(ab,b^(2)),(-a^(2),-ab)] then A is

    Text Solution

    |

  2. If A=[(3,0,0),(0,2,0),(0,0,1)] then A is

    Text Solution

    |

  3. Let A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A is

    Text Solution

    |

  4. The matrix [(0,5,-7),(-5,0,11),(7,-11,0)] is

    Text Solution

    |

  5. If A and B symmetric matrices of the same order then AB-BA is a matrix...

    Text Solution

    |

  6. If A=[(0,-1,-4),(1,0,-7),(4,7,0)] then A^(T)=

    Text Solution

    |

  7. If A=[(a,p),(b,q),(c,r)](3xx2) then Det ("AA"^(T)) is equal to

    Text Solution

    |

  8. If A=[{:(cos alpha, sin alpha),(-sin alpha, cos alpha):}], then what i...

    Text Solution

    |

  9. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] the adj. A=

    Text Solution

    |

  10. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  11. From the matrix equation AB=AC we can conclude B=C provided the matrix...

    Text Solution

    |

  12. If A and B are square matrices of order 3 such that |A|=-1,|B|=3, the ...

    Text Solution

    |

  13. If reach element of a 3xx3 matrix is multiplied by 3, then the determi...

    Text Solution

    |

  14. If B is a non singular matrix and A is a square matrix, the det(B^(-1)...

    Text Solution

    |

  15. Matrix A(lamda)=[(lamda, lamda-1),(lamda-1,lamda)], lamda in N The v...

    Text Solution

    |

  16. If A is a square matrix such that |A|=2, then |A'|, where A' is transp...

    Text Solution

    |

  17. If A=[(a,b),(c,d)] such that ad-bc!=0, then A^(-1) is equal to

    Text Solution

    |

  18. Which of the following matrices is not invertible

    Text Solution

    |

  19. The system of linear equations ax+by=0,cx+dy=0, has a non trivial solu...

    Text Solution

    |

  20. If A=[(1,-6,2),(0,-1,5)] and B=[(2),(2),(1)] then AB equals

    Text Solution

    |