Home
Class 12
MATHS
If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] the ...

If `A=[(-1,-2,-2),(2,1,-2),(2,-2,1)]` the adj. A=

A

A

B

`A^(T)`

C

`3A`

D

`3A^(T)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A \), we will follow these steps: 1. **Define the matrix \( A \)**: \[ A = \begin{pmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \] 2. **Find the cofactor matrix of \( A \)**: The cofactor matrix is obtained by calculating the cofactor for each element of the matrix \( A \). The cofactor \( C_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the submatrix obtained by deleting the \( i \)-th row and \( j \)-th column. - **Cofactor \( C_{11} \)**: \[ M_{11} = \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix} = (1)(1) - (-2)(-2) = 1 - 4 = -3 \] \[ C_{11} = (-1)^{1+1} \cdot (-3) = -3 \] - **Cofactor \( C_{12} \)**: \[ M_{12} = \begin{vmatrix} 2 & -2 \\ 2 & 1 \end{vmatrix} = (2)(1) - (-2)(2) = 2 + 4 = 6 \] \[ C_{12} = (-1)^{1+2} \cdot 6 = -6 \] - **Cofactor \( C_{13} \)**: \[ M_{13} = \begin{vmatrix} 2 & 1 \\ 2 & -2 \end{vmatrix} = (2)(-2) - (1)(2) = -4 - 2 = -6 \] \[ C_{13} = (-1)^{1+3} \cdot (-6) = -6 \] - **Cofactor \( C_{21} \)**: \[ M_{21} = \begin{vmatrix} -2 & -2 \\ -2 & 1 \end{vmatrix} = (-2)(1) - (-2)(-2) = -2 - 4 = -6 \] \[ C_{21} = (-1)^{2+1} \cdot (-6) = 6 \] - **Cofactor \( C_{22} \)**: \[ M_{22} = \begin{vmatrix} -1 & -2 \\ 2 & -2 \end{vmatrix} = (-1)(-2) - (-2)(2) = 2 + 4 = 6 \] \[ C_{22} = (-1)^{2+2} \cdot 6 = 6 \] - **Cofactor \( C_{23} \)**: \[ M_{23} = \begin{vmatrix} -1 & -2 \\ 2 & 1 \end{vmatrix} = (-1)(1) - (-2)(2) = -1 + 4 = 3 \] \[ C_{23} = (-1)^{2+3} \cdot 3 = -3 \] - **Cofactor \( C_{31} \)**: \[ M_{31} = \begin{vmatrix} -2 & -2 \\ 1 & -2 \end{vmatrix} = (-2)(-2) - (-2)(1) = 4 + 2 = 6 \] \[ C_{31} = (-1)^{3+1} \cdot 6 = 6 \] - **Cofactor \( C_{32} \)**: \[ M_{32} = \begin{vmatrix} -1 & -2 \\ 2 & -2 \end{vmatrix} = (-1)(-2) - (-2)(2) = 2 + 4 = 6 \] \[ C_{32} = (-1)^{3+2} \cdot 6 = -6 \] - **Cofactor \( C_{33} \)**: \[ M_{33} = \begin{vmatrix} -1 & -2 \\ 2 & 1 \end{vmatrix} = (-1)(1) - (-2)(2) = -1 + 4 = 3 \] \[ C_{33} = (-1)^{3+3} \cdot 3 = 3 \] Now, we can construct the cofactor matrix: \[ \text{Cofactor Matrix} = \begin{pmatrix} -3 & -6 & -6 \\ 6 & 6 & -3 \\ 6 & -6 & 3 \end{pmatrix} \] 3. **Transpose the cofactor matrix** to get the adjoint of \( A \): \[ \text{adj}(A) = \text{Cofactor Matrix}^T = \begin{pmatrix} -3 & 6 & 6 \\ -6 & 6 & -6 \\ -6 & -3 & 3 \end{pmatrix} \] Thus, the adjoint of matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} -3 & 6 & 6 \\ -6 & 6 & -6 \\ -6 & -3 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint of the given matrix and verify in each case that A.(adj A)=(adj A).A=|A\|.I. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] .

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (A)) is

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))= (A) 13 (B) 13^2 (C) 13^4 (D) none of these

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(a,p),(b,q),(c,r)](3xx2) then Det ("AA"^(T)) is equal to

    Text Solution

    |

  2. If A=[{:(cos alpha, sin alpha),(-sin alpha, cos alpha):}], then what i...

    Text Solution

    |

  3. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] the adj. A=

    Text Solution

    |

  4. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  5. From the matrix equation AB=AC we can conclude B=C provided the matrix...

    Text Solution

    |

  6. If A and B are square matrices of order 3 such that |A|=-1,|B|=3, the ...

    Text Solution

    |

  7. If reach element of a 3xx3 matrix is multiplied by 3, then the determi...

    Text Solution

    |

  8. If B is a non singular matrix and A is a square matrix, the det(B^(-1)...

    Text Solution

    |

  9. Matrix A(lamda)=[(lamda, lamda-1),(lamda-1,lamda)], lamda in N The v...

    Text Solution

    |

  10. If A is a square matrix such that |A|=2, then |A'|, where A' is transp...

    Text Solution

    |

  11. If A=[(a,b),(c,d)] such that ad-bc!=0, then A^(-1) is equal to

    Text Solution

    |

  12. Which of the following matrices is not invertible

    Text Solution

    |

  13. The system of linear equations ax+by=0,cx+dy=0, has a non trivial solu...

    Text Solution

    |

  14. If A=[(1,-6,2),(0,-1,5)] and B=[(2),(2),(1)] then AB equals

    Text Solution

    |

  15. If A=[(1,0,0),(0,1,0),(0,0,1)] then A^(2)+2A equals

    Text Solution

    |

  16. If A=[(1,1,1),(1,1,1),(1,1,1)] then A^(2)=

    Text Solution

    |

  17. If [(alpha, beta),(gamma,-alpha)] is to be square root of the two rowe...

    Text Solution

    |

  18. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  19. If A= (a(ij)) is a 4xx4 matrix and C(ij), is the co-factor of the ele...

    Text Solution

    |

  20. If A is a square matrix such that A^(2)=A, then |A| equals

    Text Solution

    |