Home
Class 12
MATHS
Matrix A(lamda)=[(lamda, lamda-1),(lamda...

Matrix `A_(lamda)=[(lamda, lamda-1),(lamda-1,lamda)], lamda in N`
The value of `|A_(1)|+|A_(2)|+…….+|A_(300)|` is

A

`(299)^(2)`

B

`(300)^(2)`

C

`(301)^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the sum of the determinants of the matrix \( A_{\lambda} \) for \( \lambda \) ranging from 1 to 300. The matrix is given as: \[ A_{\lambda} = \begin{pmatrix} \lambda & \lambda - 1 \\ \lambda - 1 & \lambda \end{pmatrix} \] ### Step 1: Calculate the Determinant of \( A_{\lambda} \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A_{\lambda} \): - \( a = \lambda \) - \( b = \lambda - 1 \) - \( c = \lambda - 1 \) - \( d = \lambda \) Thus, the determinant is: \[ |A_{\lambda}| = \lambda \cdot \lambda - (\lambda - 1)(\lambda - 1) \] Expanding this gives: \[ |A_{\lambda}| = \lambda^2 - (\lambda^2 - 2\lambda + 1) = \lambda^2 - \lambda^2 + 2\lambda - 1 = 2\lambda - 1 \] ### Step 2: Calculate the Sum of Determinants from 1 to 300 Now we need to calculate the sum: \[ |A_1| + |A_2| + |A_3| + \ldots + |A_{300}| \] Substituting the determinant we found: \[ |A_1| + |A_2| + \ldots + |A_{300}| = (2 \cdot 1 - 1) + (2 \cdot 2 - 1) + (2 \cdot 3 - 1) + \ldots + (2 \cdot 300 - 1) \] This simplifies to: \[ = (2 - 1) + (4 - 1) + (6 - 1) + \ldots + (600 - 1) \] ### Step 3: Simplify the Expression The sum can be separated into two parts: \[ = (2 + 4 + 6 + \ldots + 600) - (1 + 1 + \ldots + 1) \] The first part is the sum of the first 300 even numbers, which can be calculated using the formula for the sum of the first \( n \) even numbers: \[ \text{Sum of first } n \text{ even numbers} = n(n + 1) \] For \( n = 300 \): \[ \text{Sum} = 300 \cdot (300 + 1) = 300 \cdot 301 = 90300 \] The second part is simply \( 300 \) (since we are subtracting 1 for each of the 300 terms). ### Step 4: Final Calculation Now we can calculate the total: \[ = 90300 - 300 = 90000 \] ### Conclusion Thus, the value of \( |A_1| + |A_2| + \ldots + |A_{300}| \) is: \[ \boxed{90000} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If p lamda ^(4) + q lamda ^(3) + r lamda ^(2) + s lamda +t = |{:(lamda ^(2) + 3 lamda, lamda -1, lamda +3), ( lamda +1, 2 - lamda , lamda -4), ( lamda -3, lamda+4, 3lamda):}|. then the value of t is

Let plamda^(4)+qlamda^(3)+rlamda^(2)+slamda+t =|(lamda^(2)+3lamda,lamda-1,lamda-3),(lamda-1,-2lamda,lamda-4),(lamda-3,lamda+4,3lamda)| where p,q,r,s, and t are constant. Then value of t is

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

If a_(1)=a, a_(2)=b, a_(n+2)=(a_(n+1)+a_(n))/2, nge 0 then lim_(n to oo) a_(n) is (a+lamda_(1)b)/(lamda_(2)), (lamda_(1),lamda_(2) epsilonI) where lamda_(1)+lamda_(2) is _______

The vertices of a DeltaABC are (lamda,2-,2lamda),(-lamda+1,2lamda) and (-4-lamda,6-2lamda) . If its area be 70 units, then number of integral values of lamda is

If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360 , then the value of lamda is

The determinant Delta =|(lamda a , lamda^(2)+a^(2),1),(lamda b,lamda^(2)+b^(2),1),(lamdac,lamda^(2)+c^(2),1)| equals

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If reach element of a 3xx3 matrix is multiplied by 3, then the determi...

    Text Solution

    |

  2. If B is a non singular matrix and A is a square matrix, the det(B^(-1)...

    Text Solution

    |

  3. Matrix A(lamda)=[(lamda, lamda-1),(lamda-1,lamda)], lamda in N The v...

    Text Solution

    |

  4. If A is a square matrix such that |A|=2, then |A'|, where A' is transp...

    Text Solution

    |

  5. If A=[(a,b),(c,d)] such that ad-bc!=0, then A^(-1) is equal to

    Text Solution

    |

  6. Which of the following matrices is not invertible

    Text Solution

    |

  7. The system of linear equations ax+by=0,cx+dy=0, has a non trivial solu...

    Text Solution

    |

  8. If A=[(1,-6,2),(0,-1,5)] and B=[(2),(2),(1)] then AB equals

    Text Solution

    |

  9. If A=[(1,0,0),(0,1,0),(0,0,1)] then A^(2)+2A equals

    Text Solution

    |

  10. If A=[(1,1,1),(1,1,1),(1,1,1)] then A^(2)=

    Text Solution

    |

  11. If [(alpha, beta),(gamma,-alpha)] is to be square root of the two rowe...

    Text Solution

    |

  12. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  13. If A= (a(ij)) is a 4xx4 matrix and C(ij), is the co-factor of the ele...

    Text Solution

    |

  14. If A is a square matrix such that A^(2)=A, then |A| equals

    Text Solution

    |

  15. If A^(2)+A=I then A^(-1) is

    Text Solution

    |

  16. If A^(2)-A+I=O then inverse of A is

    Text Solution

    |

  17. The multiplicative inverse of A=[(cos theta,-sin theta),(sin theta, co...

    Text Solution

    |

  18. The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    Text Solution

    |

  19. If A=BX and A=[(1,2),(3,-4)] and B is [(1,0),(0,2)] then X=

    Text Solution

    |

  20. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |