Home
Class 12
MATHS
If A=[(1,1,1),(1,1,1),(1,1,1)] then A^(2...

If `A=[(1,1,1),(1,1,1),(1,1,1)]` then `A^(2)=`

A

A

B

2A

C

3A

D

I

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \), we will perform matrix multiplication. ### Step 1: Write down the matrix \( A \) We have: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^2 = A \times A \) To find \( A^2 \), we multiply matrix \( A \) by itself. The element at position \( (i, j) \) in the resulting matrix is obtained by taking the dot product of the \( i \)-th row of the first matrix and the \( j \)-th column of the second matrix. ### Step 3: Calculate each element of \( A^2 \) - **Element at (1,1)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (1,2)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (1,3)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (2,1)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (2,2)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (2,3)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (3,1)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (3,2)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] - **Element at (3,3)**: \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 1 + 1 + 1 = 3 \] ### Step 4: Write the resulting matrix \( A^2 \) Putting all the calculated elements together, we get: \[ A^2 = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} \] ### Step 5: Conclusion Thus, the final result is: \[ A^2 = 3A \] where \( A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

if A=[[1,1,1],[1,1,1],[1,1,1]] then find A^2

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

Let A= [{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B= [{:(,2,-1,-1),(,-1,2,-1),(,-1,-1,2):}] and C=3A+7B

If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j A)^(-1) and (a d j A^(-1)) .

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

If A=([1,1],[1,1]) then A^(2) is

If A=[[1,1,1],[1,2,1],[1,1,2]] ,then prove that A^(-1)=[[3,-1,-1],[-1,1,0],[-1,0,1]]

The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/2 Is it true or false

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(1,-6,2),(0,-1,5)] and B=[(2),(2),(1)] then AB equals

    Text Solution

    |

  2. If A=[(1,0,0),(0,1,0),(0,0,1)] then A^(2)+2A equals

    Text Solution

    |

  3. If A=[(1,1,1),(1,1,1),(1,1,1)] then A^(2)=

    Text Solution

    |

  4. If [(alpha, beta),(gamma,-alpha)] is to be square root of the two rowe...

    Text Solution

    |

  5. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  6. If A= (a(ij)) is a 4xx4 matrix and C(ij), is the co-factor of the ele...

    Text Solution

    |

  7. If A is a square matrix such that A^(2)=A, then |A| equals

    Text Solution

    |

  8. If A^(2)+A=I then A^(-1) is

    Text Solution

    |

  9. If A^(2)-A+I=O then inverse of A is

    Text Solution

    |

  10. The multiplicative inverse of A=[(cos theta,-sin theta),(sin theta, co...

    Text Solution

    |

  11. The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    Text Solution

    |

  12. If A=BX and A=[(1,2),(3,-4)] and B is [(1,0),(0,2)] then X=

    Text Solution

    |

  13. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |

  14. If D=diag[d(1),d(2),…………..,d(n)] where d(i)!=0AAi=1,2,3,………..n then D^...

    Text Solution

    |

  15. If A=[(3,4),(2,4)],B=[(-2,-2),(0,-2)] then (A+B)^(-1)=

    Text Solution

    |

  16. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  17. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  18. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  19. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  20. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |