Home
Class 12
MATHS
If [(alpha, beta),(gamma,-alpha)] is to ...

If `[(alpha, beta),(gamma,-alpha)]` is to be square root of the two rowed unit matrix, then `alpha, beta` and `gamma` satisfy the relation

A

`1+alpha^(2)+beta gamma=0`

B

`1-alpha^(2)-beta gamma=0`

C

`1-alpha^(2)+beta gamma=0`

D

`1+alpha^(2)-beta gamma =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relation that the variables \( \alpha \), \( \beta \), and \( \gamma \) satisfy given that the matrix \( \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \) is the square root of the two-row unit matrix \( I_2 \). ### Step-by-Step Solution: 1. **Define the Matrices**: Let \( A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \). We know that \( A^2 = I_2 \), where \( I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). 2. **Square the Matrix**: We calculate \( A^2 \): \[ A^2 = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] 3. **Perform the Matrix Multiplication**: - The element at (1,1): \[ \alpha \cdot \alpha + \beta \cdot \gamma = \alpha^2 + \beta \gamma \] - The element at (1,2): \[ \alpha \cdot \beta + \beta \cdot (-\alpha) = \alpha \beta - \beta \alpha = 0 \] - The element at (2,1): \[ \gamma \cdot \alpha + (-\alpha) \cdot \gamma = \gamma \alpha - \alpha \gamma = 0 \] - The element at (2,2): \[ \gamma \cdot \beta + (-\alpha) \cdot (-\alpha) = \gamma \beta + \alpha^2 \] Thus, we have: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \gamma \beta + \alpha^2 \end{pmatrix} \] 4. **Set \( A^2 \) Equal to \( I_2 \)**: Since \( A^2 = I_2 \), we equate: \[ \begin{pmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \gamma \beta + \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 5. **Extract the Equations**: From the equality of the matrices, we get two equations: - From the (1,1) entry: \[ \alpha^2 + \beta \gamma = 1 \quad \text{(1)} \] - From the (2,2) entry: \[ \gamma \beta + \alpha^2 = 1 \quad \text{(2)} \] 6. **Combine the Equations**: Both equations (1) and (2) are essentially the same, thus confirming: \[ \alpha^2 + \beta \gamma = 1 \] ### Final Relation: The relation that \( \alpha \), \( \beta \), and \( \gamma \) satisfy is: \[ \alpha^2 + \beta \gamma = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If {:[(alpha,beta),(gamma,-alpha)]:} is to be the square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation

If [[alpha,betagamma,-alpha]] is to be square root of two-rowed unit matrix,then alpha,beta and gamma should satisfy the relation.1-alpha^(2)+beta gamma=0 b.alpha^(2)+beta gamma=0 c.1+alpha^(2)+beta gamma=0 d.1-alpha^(2)-beta gamma=0

What is the unit of alpha, beta , gamma ?

If alpha , beta , gamma are roots of x^(3)-3x+11=0 then equation whose roots are beta + gamma , alpha + beta , alpha + gamma is

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(1,0,0),(0,1,0),(0,0,1)] then A^(2)+2A equals

    Text Solution

    |

  2. If A=[(1,1,1),(1,1,1),(1,1,1)] then A^(2)=

    Text Solution

    |

  3. If [(alpha, beta),(gamma,-alpha)] is to be square root of the two rowe...

    Text Solution

    |

  4. If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)]then (alpha,...

    Text Solution

    |

  5. If A= (a(ij)) is a 4xx4 matrix and C(ij), is the co-factor of the ele...

    Text Solution

    |

  6. If A is a square matrix such that A^(2)=A, then |A| equals

    Text Solution

    |

  7. If A^(2)+A=I then A^(-1) is

    Text Solution

    |

  8. If A^(2)-A+I=O then inverse of A is

    Text Solution

    |

  9. The multiplicative inverse of A=[(cos theta,-sin theta),(sin theta, co...

    Text Solution

    |

  10. The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    Text Solution

    |

  11. If A=BX and A=[(1,2),(3,-4)] and B is [(1,0),(0,2)] then X=

    Text Solution

    |

  12. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |

  13. If D=diag[d(1),d(2),…………..,d(n)] where d(i)!=0AAi=1,2,3,………..n then D^...

    Text Solution

    |

  14. If A=[(3,4),(2,4)],B=[(-2,-2),(0,-2)] then (A+B)^(-1)=

    Text Solution

    |

  15. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  16. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  17. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  18. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  19. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  20. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |