Home
Class 12
MATHS
The multiplicative inverse of A=[(cos th...

The multiplicative inverse of `A=[(cos theta,-sin theta),(sin theta, cos theta)]` is equal to

A

`[(-cos theta, sin theta),(-sin theta, -cos theta)]`

B

`[(cos theta, sin theta),(-sin theta, cos theta)]`

C

`[(-cos theta, -sin theta),(sin theta, -cos theta)]`

D

`[(costheta, sin theta),(sin theta,-cos theta)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the multiplicative inverse of the matrix \( A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = \cos \theta \) - \( b = -\sin \theta \) - \( c = \sin \theta \) - \( d = \cos \theta \) Thus, the determinant is: \[ \text{det}(A) = (\cos \theta)(\cos \theta) - (-\sin \theta)(\sin \theta) = \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity, we know that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] So, \( \text{det}(A) = 1 \). ### Step 2: Find the Adjoint of Matrix A The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( d = \cos \theta \) - \( -b = \sin \theta \) - \( -c = -\sin \theta \) - \( a = \cos \theta \) Thus, the adjoint is: \[ \text{adj}(A) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since we found that \( \text{det}(A) = 1 \), we have: \[ A^{-1} = \frac{1}{1} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Final Answer Thus, the multiplicative inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

(i) |(cos theta,-sin theta),(sin theta,cos theta)|

cos theta/(1+sin theta)=(1-sin theta)/cos theta

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

Find the inverse of A=[[cos theta,-sin theta,0sin theta,cos theta,00,0,1]]

Find the value of |[cos theta,-sin theta],[sin theta,cos theta]|

Inverse of the matrix [(cos 2 theta,-sin 2theta),(sin 2 theta, cos 2theta)] is

Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inverse of a is

A = [(cos theta,-sin theta),(-sin theta,-cos theta)] then find A^(-1) .

If sin theta+cos theta=1, then sin theta cos theta is equal to :

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A^(2)+A=I then A^(-1) is

    Text Solution

    |

  2. If A^(2)-A+I=O then inverse of A is

    Text Solution

    |

  3. The multiplicative inverse of A=[(cos theta,-sin theta),(sin theta, co...

    Text Solution

    |

  4. The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    Text Solution

    |

  5. If A=BX and A=[(1,2),(3,-4)] and B is [(1,0),(0,2)] then X=

    Text Solution

    |

  6. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |

  7. If D=diag[d(1),d(2),…………..,d(n)] where d(i)!=0AAi=1,2,3,………..n then D^...

    Text Solution

    |

  8. If A=[(3,4),(2,4)],B=[(-2,-2),(0,-2)] then (A+B)^(-1)=

    Text Solution

    |

  9. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  10. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  11. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  12. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  13. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  14. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  15. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  16. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  17. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  18. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  19. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  20. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |